Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Mol Cell ; 80(5): 892-902.e4, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33188727

ABSTRACT

Primary microRNAs (miRNAs) are the precursors of miRNAs that modulate the expression of most mRNAs in humans. They fold up into a hairpin structure that is cleaved at its base by an enzyme complex known as the Microprocessor (Drosha/DGCR8). While many of the molecular details are known, a complete understanding of what features distinguish primary miRNA from hairpin structures in other transcripts is still lacking. We develop a massively parallel functional assay termed Dro-seq (Drosha sequencing) that enables testing of hundreds of known primary miRNA substrates and thousands of single-nucleotide variants. We find an additional feature of primary miRNAs, called Shannon entropy, describing the structural ensemble important for processing. In a deep mutagenesis experiment, we observe particular apical loop U bases, likely recognized by DGCR8, are important for efficient processing. These findings build on existing knowledge about primary miRNA maturation by the Microprocessor and further explore the substrate RNA sequence-structure relationship.


Subject(s)
MicroRNAs , Multiprotein Complexes , Nucleic Acid Conformation , RNA Processing, Post-Transcriptional , RNA-Binding Proteins , Ribonuclease III , Animals , Humans , MicroRNAs/chemistry , MicroRNAs/genetics , MicroRNAs/metabolism , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Ribonuclease III/chemistry , Ribonuclease III/metabolism , Sf9 Cells , Spodoptera
2.
Methods Mol Biol ; 1870: 81-87, 2019.
Article in English | MEDLINE | ID: mdl-30539548

ABSTRACT

Introduction of chemical labels into biomolecules is of utmost importance in chemical biology research. However, methods for selective chemical labeling of in vitro transcribed RNA are scarce. Herein, we describe experimental details for direct labeling of the 5'-phosphate of RNA using a diazo biotin-reagent, as exemplified on a 110 nucleotide RNA obtained via in vitro transcription. The method exploits the fact that, under neutral buffer conditions (~pH 6.8), the 5'-phosphate carries the only mildly acidic proton in the RNA molecule, which allows for selective functionalization at that site using diazo reagents.


Subject(s)
Biotin/chemistry , Biotinylation , Diazonium Compounds/chemistry , RNA/chemistry , Biotinylation/methods , Chromatography, Liquid , Mass Spectrometry , Molecular Structure , RNA/isolation & purification , Staining and Labeling
3.
Life Sci Alliance ; 1(4): e201800124, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30456373

ABSTRACT

Eukaryotic genomes produce RNAs lacking protein-coding potential, with enigmatic roles. We integrated three approaches to study large intervening noncoding RNA (lincRNA) gene functions. First, we profiled mouse embryonic stem cells and neural precursor cells at single-cell resolution, revealing lincRNAs expressed in specific cell types, cell subpopulations, or cell cycle stages. Second, we assembled a transcriptome-wide atlas of nuclear lincRNA degradation by identifying targets of the exosome cofactor Mtr4. Third, we developed a reversible depletion system to separate the role of a lincRNA gene from that of its RNA. Our approach distinguished lincRNA loci functioning in trans from those modulating local gene expression. Some genes express stable and/or abundant lincRNAs in single cells, but many prematurely terminate transcription and produce lincRNAs rapidly degraded by the nuclear exosome. This suggests that besides RNA-dependent functions, lincRNA loci act as DNA elements or through transcription. Our integrative approach helps distinguish these mechanisms.

4.
Cell ; 173(1): 181-195.e18, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29551268

ABSTRACT

mRNAs can fold into complex structures that regulate gene expression. Resolving such structures de novo has remained challenging and has limited our understanding of the prevalence and functions of mRNA structure. We use SHAPE-MaP experiments in living E. coli cells to derive quantitative, nucleotide-resolution structure models for 194 endogenous transcripts encompassing approximately 400 genes. Individual mRNAs have exceptionally diverse architectures, and most contain well-defined structures. Active translation destabilizes mRNA structure in cells. Nevertheless, mRNA structure remains similar between in-cell and cell-free environments, indicating broad potential for structure-mediated gene regulation. We find that the translation efficiency of endogenous genes is regulated by unfolding kinetics of structures overlapping the ribosome binding site. We discover conserved structured elements in 35% of UTRs, several of which we validate as novel protein binding motifs. RNA structure regulates every gene studied here in a meaningful way, implying that most functional structures remain to be discovered.


Subject(s)
Nucleic Acid Amplification Techniques/methods , RNA, Messenger/metabolism , Algorithms , Binding Sites , Cell-Free System , DNA Primers/metabolism , Electrophoretic Mobility Shift Assay , Entropy , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Models, Molecular , Nucleic Acid Conformation , Protein Biosynthesis , RNA Folding , RNA, Messenger/chemistry , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Ribosomes/chemistry , Ribosomes/metabolism , Untranslated Regions
5.
J Biomol Screen ; 20(1): 153-63, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25252731

ABSTRACT

Dengue virus (DENV) is the most significant mosquito-borne viral pathogen in the world and is the cause of dengue fever. The DENV RNA-dependent RNA polymerase (RdRp) is conserved among the four viral serotypes and is an attractive target for antiviral drug development. During initiation of viral RNA synthesis, the polymerase switches from a "closed" to "open" conformation to accommodate the viral RNA template. Inhibitors that lock the "closed" or block the "open" conformation would prevent viral RNA synthesis. Herein, we describe a screening campaign that employed two biochemical assays to identify inhibitors of RdRp initiation and elongation. Using a DENV subgenomic RNA template that promotes RdRp de novo initiation, the first assay measures cytosine nucleotide analogue (Atto-CTP) incorporation. Liberated Atto fluorophore allows for quantification of RdRp activity via fluorescence. The second assay uses the same RNA template but is label free and directly detects RdRp-mediated liberation of pyrophosphates of native ribonucleotides via liquid chromatography-mass spectrometry. The ability of inhibitors to bind and stabilize a "closed" conformation of the DENV RdRp was further assessed in a differential scanning fluorimetry assay. Last, active compounds were evaluated in a renilla luciferase-based DENV replicon cell-based assay to monitor cellular efficacy. All assays described herein are medium to high throughput, are robust and reproducible, and allow identification of inhibitors of the open and closed forms of DENV RNA polymerase.


Subject(s)
Antiviral Agents/pharmacology , DNA-Directed RNA Polymerases/antagonists & inhibitors , Dengue Virus/drug effects , Dengue Virus/enzymology , Drug Evaluation, Preclinical/methods , High-Throughput Screening Assays/methods , Microbial Sensitivity Tests/methods , Chromatography, Liquid , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Dengue Virus/genetics , Dose-Response Relationship, Drug , Drug Discovery/methods , Drug Discovery/standards , Drug Evaluation, Preclinical/standards , High-Throughput Screening Assays/standards , Humans , Inhibitory Concentration 50 , Mass Spectrometry , Microbial Sensitivity Tests/standards , Reproducibility of Results , Small Molecule Libraries
6.
Genome Res ; 24(5): 775-85, 2014 May.
Article in English | MEDLINE | ID: mdl-24663241

ABSTRACT

It is commonly known that mammalian microRNAs (miRNAs) guide the RNA-induced silencing complex (RISC) to target mRNAs through the seed-pairing rule. However, recent experiments that coimmunoprecipitate the Argonaute proteins (AGOs), the central catalytic component of RISC, have consistently revealed extensive AGO-associated mRNAs that lack seed complementarity with miRNAs. We herein test the hypothesis that AGO has its own binding preference within target mRNAs, independent of guide miRNAs. By systematically analyzing the data from in vivo cross-linking experiments with human AGOs, we have identified a structurally accessible and evolutionarily conserved region (∼10 nucleotides in length) that alone can accurately predict AGO-mRNA associations, independent of the presence of miRNA binding sites. Within this region, we further identified an enriched motif that was replicable on independent AGO-immunoprecipitation data sets. We used RNAcompete to enumerate the RNA-binding preference of human AGO2 to all possible 7-mer RNA sequences and validated the AGO motif in vitro. These findings reveal a novel function of AGOs as sequence-specific RNA-binding proteins, which may aid miRNAs in recognizing their targets with high specificity.


Subject(s)
Argonaute Proteins/metabolism , RNA, Messenger/metabolism , Argonaute Proteins/chemistry , Argonaute Proteins/genetics , Base Sequence , Binding Sites , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Molecular Sequence Data , Nucleotide Motifs , Protein Binding , RNA, Messenger/chemistry , RNA, Messenger/genetics
8.
Nat Biotechnol ; 29(7): 659-64, 2011 Jun 26.
Article in English | MEDLINE | ID: mdl-21706015

ABSTRACT

Several methods for characterizing DNA-protein interactions are available, but none have demonstrated both high throughput and quantitative measurement of affinity. Here we describe 'high-throughput sequencing'-'fluorescent ligand interaction profiling' (HiTS-FLIP), a technique for measuring quantitative protein-DNA binding affinity at unprecedented depth. In this approach, the optics built into a high-throughput sequencer are used to visualize in vitro binding of a protein to sequenced DNA in a flow cell. Application of HiTS-FLIP to the protein Gcn4 (Gcn4p), the master regulator of the yeast amino acid starvation response, yielded ~440 million binding measurements, enabling determination of dissociation constants for all 12-mer sequences having submicromolar affinity. These data revealed a complex interdependency between motif positions, allowed improved discrimination of in vivo Gcn4p binding sites and regulatory targets relative to previous methods and showed that sets of genes with different promoter affinities to Gcn4p have distinct functions and expression kinetics. Broad application of this approach should increase understanding of the interactions that drive transcription.


Subject(s)
Chromatography, Affinity/instrumentation , DNA-Binding Proteins/chemistry , DNA/chemistry , Protein Interaction Mapping/instrumentation , Sequence Analysis, DNA/methods , Spectrometry, Fluorescence/instrumentation , DNA/genetics , DNA-Binding Proteins/genetics , Equipment Design , Equipment Failure Analysis
9.
Nat Struct Mol Biol ; 16(10): 1094-100, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19749754

ABSTRACT

Pre-mRNA splicing is regulated through the combinatorial activity of RNA motifs, including splice sites and splicing regulatory elements. Here we show that the activity of the G-run (polyguanine sequence) class of splicing enhancer elements is approximately 4-fold higher when adjacent to intermediate strength 5' splice sites (ss) than when adjacent to weak 5' ss, and approximately 1.3-fold higher relative to strong 5' ss. We observed this dependence on 5' ss strength in both splicing reporters and in global microarray and mRNA-Seq analyses of splicing changes following RNA interference against heterogeneous nuclear ribonucleoprotein (hnRNP) H, which cross-linked to G-runs adjacent to many regulated exons. An exon's responsiveness to changes in hnRNP H levels therefore depends in a complex way on G-run abundance and 5' ss strength. This pattern of activity enables G-runs and hnRNP H to buffer the effects of 5' ss mutations, augmenting both the frequency of 5' ss polymorphism and the evolution of new splicing patterns. Certain other splicing factors may function similarly.


Subject(s)
Alternative Splicing , Poly G/genetics , Amino Acid Motifs , Animals , Cross-Linking Reagents/metabolism , Exons , Genetic Techniques , Heterogeneous-Nuclear Ribonucleoprotein Group F-H/metabolism , Humans , Mice , Models, Genetic , Oligonucleotide Array Sequence Analysis , RNA Precursors/genetics , RNA Splicing , RNA, Messenger/metabolism
10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(3 Pt 1): 031906, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19391970

ABSTRACT

DNA aptamers are molecular biosensors consisting of single functionalized DNA molecules, which can bind to specific targets or complementary DNA sequences. The binding kinetics of DNA aptamers is studied by fluorescence quenching at 23 degrees C . A kinetic model for the binding reaction of DNA aptamer, antisense DNA, and ATP target is developed to describe experimental observations. The approach leads to a simple procedure to deduce relevant kinetic reactions and their rate constants. A comparison between theory and experiments indicates that the previously established bimolecular DNA-ATP binding does not provide a complete description of the experimental data. Side reactions such as trimolecular complexation are proposed. Rate constants of the model are determined by comparing the model predictions and experiments. Good agreements between the model and experiments have been obtained. Possible blocking reactions by the misfolded DNA aptamer are also discussed.


Subject(s)
Adenosine Triphosphate/metabolism , Aptamers, Nucleotide/metabolism , Aptamers, Nucleotide/chemistry , Fluorescence , Kinetics , Models, Molecular
11.
Langmuir ; 23(3): 1300-2, 2007 Jan 30.
Article in English | MEDLINE | ID: mdl-17241049

ABSTRACT

With the long-term goal of developing paper surfaces that will detect pathogens, we have investigated physical adsorption and covalent coupling as strategies for treating cellulose surfaces with a DNA aptamer that binds ATP. Physical adsorption was reversible and the isotherms fitted the Langmuir equation with an adsorption maximum of 0.105 mg/m2 at high ionic strength (300 mM NaCl, 25 mM Tris-HCl) and only 0.024 mg/m2 in lower ionic strength buffer (25 mM Tris-HCl). Covalent coupling of amine-terminated aptamer with oxidized cellulose film (Schiff base + reduction) gave 25% coupling efficiency while maintaining the aptamer activity which was illustrated by using a known fluorescent aptamer that is capable of ATP detection. Therefore, covalent coupling, without spacer molecules, is a promising approach for supporting biosensing aptamers on cellulose.


Subject(s)
Adenosine Triphosphate/chemistry , Aptamers, Nucleotide/chemistry , Cellulose , Adsorption , Biosensing Techniques/methods , Buffers , Osmolar Concentration
14.
J Am Chem Soc ; 128(3): 780-90, 2006 Jan 25.
Article in English | MEDLINE | ID: mdl-16417367

ABSTRACT

Recent years have seen a dramatic increase in the use of fluorescence-signaling DNA aptamers and deoxyribozymes as novel biosensing moieties. Many of these functional single-stranded DNA molecules are either engineered to function in the presence of divalent metal ion cofactors or designed as sensors for specific divalent metal ions. However, many divalent metal ions are potent fluorescence quenchers. In this study, we first set out to examine the factors that contribute to quenching of DNA-bound fluorophores by commonly used divalent metal ions, with the goal of establishing general principles that can guide future exploitation of fluorescence-signaling DNA aptamers and deoxyribozymes as biosensing probes. We then extended these studies to examine the effect of specific metals on the signaling performance of both a structure-switching signaling DNA aptamer and an RNA-cleaving and fluorescence-signaling deoxyribozyme. These studies showed extensive quenching was obtained when using divalent transition metal ions owing to direct DNA-metal ion interactions, leading to combined static and dynamic quenching. The extent of quenching was dependent on the type of metal ion and the concentration of supporting monovalent cations in the buffer, with quenching increasing with the number of unpaired electrons in the metal ion and decreasing with the concentration of monovalent ions. The extent of quenching was independent of the fluorophore, indicating that quenching cannot be alleviated simply by changing the nature of the fluorescent probe. Our results also show that the DNA sequence and the local secondary structure in the region of the fluorescent tag can dramatically influence the degree of quenching by divalent transition metal ions. In particular, the extent of quenching is predominantly determined by the fluorophore location with respect to guanine-rich and duplex regions within the strand sequence. Examination of the effect of both the type and concentration of metal ions on the performance of a fluorescence-signaling aptamer and a signaling deoxyribozyme confirms that judicious choice of divalent transition metal ions is important in maximizing signals obtained from such systems.


Subject(s)
Aptamers, Nucleotide/chemistry , DNA, Catalytic/chemistry , DNA/chemistry , Fluorescent Dyes/chemistry , Metals/chemistry , Base Sequence , Cations, Divalent , Cobalt/chemistry , Fluorescence , Fluorometry , Magnesium/chemistry , Manganese/chemistry , Nickel/chemistry , Nucleic Acid Conformation
15.
Methods ; 37(1): 16-25, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16199173

ABSTRACT

Aptamers are single-stranded DNA or RNA molecules with ligand-binding capabilities. Signaling aptamers refer to aptamers or modified aptamers with recordable signal generation ability. Fluorescence-signaling aptamers, in particular, are valuable molecular tools that can be used to establish important techniques or assays for the interrogation of identities and concentrations of proteins and metabolites. Since standard DNA and RNA aptamers themselves are not inherently fluorescent, modification methods are required for rationally converting non-fluorescent aptamers into fluorescent reporters or for selecting fluorescent aptamers directly from random-sequence DNA libraries by in vitro selection. This article will provide a brief review of various signaling aptamer design strategies as well as a detailed description of methods that can be used to generate, by both rational design and in vitro selection, a special class of signaling aptamers dubbed "structure-switching signaling aptamers." This class of signaling aptamers are designed to function by switching structures from a pre-formed, lowly fluorescent duplex assembly to a ligand-aptamer complex having a higher level of fluorescence.


Subject(s)
Aptamers, Nucleotide/metabolism , Biosensing Techniques/methods , Adenosine Triphosphate/metabolism , Aptamers, Nucleotide/chemistry , Fluorescent Dyes/chemistry , Guanosine Triphosphate/metabolism , Oligonucleotides/chemistry , Oligonucleotides/metabolism , Polymerase Chain Reaction
17.
Anal Chem ; 77(14): 4300-7, 2005 Jul 15.
Article in English | MEDLINE | ID: mdl-16013839

ABSTRACT

We report on the first successful immobilization of a DNA aptamer, in particular, a fluorescence-signaling DNA aptamer, within a sol-gel-derived matrix. The specific aptamer examined in this study undergoes a structural switch in the presence of adenosine triphosphate (ATP) to release a dabcyl-labeled nucleotide strand (QDNA), which in turn relieves the quenching of a fluorescein label that is also present in the aptamer structure. It was demonstrated that aptamers containing a complementary QDNA strand along with either a short complimentary strand bearing fluorescein (tripartite structure) or a directly bound fluorescein moiety (bipartite structure) remained intact upon entrapment within biocompatible sol-gel derived materials and retained binding activity, structure-switching capabilities, and fluorescence signal generation that was selective and sensitive to ATP concentration. Studies were undertaken to evaluate the properties of the immobilized aptamers that were either in their native state or bound to streptavidin using a terminal biotin group on the aptamer, including response time, accessibility, and leaching. Furthermore, signaling abilities were optimized through evaluation of different QDNA constructs. These studies indicated that the aptamers remained in a state that was similar to solution, with moderate leaching, only minor decreases in accessibility to ATP, and an expected reduction in response time due to diffusional barriers to mass transport of the analyte through the silica matrix. Entrapment of the aptamer also resulted in protection of the DNA against degradation from nucleases, improving the potential for use of the aptamer for in vivo sensing. This work demonstrates that sol-gel-derived materials can be used to successfully immobilize and protect DNA-based biorecognition elements and, in particular, DNA aptamers, opening new possibilities for the development of DNA aptamer-based devices, such as affinity columns, microarrays, and fiber-optic sensors.


Subject(s)
Aptamers, Nucleotide/analysis , Aptamers, Nucleotide/chemistry , Phase Transition , Silicon Dioxide/chemistry , Adenosine Triphosphate/metabolism , Fluorescence
18.
FEBS Lett ; 579(6): 1371-5, 2005 Feb 28.
Article in English | MEDLINE | ID: mdl-15733843

ABSTRACT

Tau is a microtubule-associated protein, which plays an important role in physiology and pathology of neurons. Tau has been recently reported to bind double-stranded DNA (dsDNA) but not to bind single-stranded DNA (ssDNA) [Cell. Mol. Life Sci. 2003, 60, 413-421]. Here, we prove that tau binds not only dsDNA but also ssDNA. This finding was facilitated by using two kinetic capillary electrophoresis methods: (i) non-equilibrium capillary electrophoresis of equilibrium mixtures (NECEEM); (ii) affinity-mediated NECEEM. Using the new approach, we observed, for the first time, that tau could induce dissociation of strands in dsDNA by binding one of them in a sequence-specific fashion. Moreover, we determined the equilibrium dissociation constants for all tau-DNA complexes studied.


Subject(s)
DNA, Single-Stranded/metabolism , tau Proteins/metabolism , Animals , Base Sequence , DNA, Single-Stranded/genetics , Electrophoresis, Capillary , Escherichia coli , Protein Binding , Substrate Specificity , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...