Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
AoB Plants ; 10(1): plx047, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29340133

ABSTRACT

Herbivores can profoundly influence plant species assembly, including plant invasion, and resulting community composition. Population increases of native herbivores, e.g. white-tailed deer (Odocoileus virginianus), combined with burgeoning plant invasions raise concerns for native plant diversity and forest regeneration. While individual researchers typically test for the impact of deer on plant invasion at a few sites, the overarching influence of deer on plant invasion across regional scales is unclear. We tested the effects of deer on the abundance and diversity of introduced and native herbaceous and woody plants across 23 white-tailed deer research sites distributed across the east-central and north-eastern USA and representing a wide range of deer densities and invasive plant abundance and identity. Deer access/exclusion or deer population density did not affect introduced plant richness or community-level abundance. Native and total plant species richness, abundance (cover and stem density) and Shannon diversity were lower in deer-access vs. deer-exclusion plots. Among deer-access plots, native species richness, native and total cover, and Shannon diversity (cover) declined as deer density increased. Deer access increased the proportion of introduced species cover (but not of species richness or stem density). As deer density increased, the proportion of introduced species richness, cover and stem density all increased. Because absolute abundance of introduced plants was unaffected by deer, the increase in proportion of introduced plant abundance is likely an indirect effect of deer reducing native cover. Indicator species analysis revealed that deer access favoured three introduced plant species, including Alliaria petiolata and Microstegium vimineum, as well as four native plant species. In contrast, deer exclusion favoured three introduced plant species, including Lonicera japonica and Rosa multiflora, and 15 native plant species. Overall, native deer reduced community diversity, lowering native plant richness and abundance, and benefited certain invasive plants, suggesting pervasive impacts of this keystone herbivore on plant community composition and ecosystem services in native forests across broad swathes of the eastern USA.

2.
Conserv Biol ; 23(4): 966-74, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19236448

ABSTRACT

Identification of factors that drive changes in plant community structure and contribute to decline and endangerment of native plant species is essential to the development of appropriate management strategies. Introduced species are assumed to be driving causes of shifts in native plant communities, but unequivocal evidence supporting this view is frequently lacking. We measured native vegetation, non-native earthworm biomass, and leaf-litter volume in 15 forests in the presence and absence of 3 non-native plant species (Microstegium vimineum, Alliaria petiolata, Berberis thunbergii) to assess the general impact of non-native plant and earthworm invasions on native plant communities in northeastern United States. Non-native plant cover was positively correlated with total native plant cover and non-native earthworm biomass. Earthworm biomass was negatively associated with cover of native woody and most herbaceous plants and with litter volume. Graminoid cover was positively associated with non-native earthworm biomass and non-native plant cover. These earthworm-associated responses were detected at all sites despite differences in earthworm species and abundance, composition of the native plant community, identity of invasive plant species, and geographic region. These patterns suggest earthworm invasion, rather than non-native plant invasion, is the driving force behind changes in forest plant communities in northeastern North America, including declines in native plant species, and earthworm invasions appear to facilitate plant invasions in these forests. Thus, a focus on management of invasive plant species may be insufficient to protect northeastern forest understory species.


Subject(s)
Oligochaeta/physiology , Plants , Animals , Biomass , North America
3.
Conserv Biol ; 23(4): 975-81, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19236449

ABSTRACT

Factors that negatively affect the quality of wildlife habitat are a major concern for conservation. Non-native species invasions, in particular, are perceived as a global threat to the quality of wildlife habitat. Recent evidence indicates that some changes to understory plant communities in northern temperate forests of North America, including invasions by 3 non-native plant species, are facilitated by non-native earthworm invasion. Furthermore, non-native earthworm invasions cause a reduction in leaf litter on the forest floor, and the loss of forest leaf litter is commonly associated with declines in forest fauna, including amphibians. We conducted a mark-recapture study of woodland salamander abundance across plant invasion fronts at 10 sites to determine whether earthworm or plant invasions were associated with reduced salamander abundance. Salamander abundance declined exponentially with decreasing leaf litter volume. There was no significant relationship between invasive plant cover and salamander abundance, independent of the effects of leaf litter loss due to earthworm invasion. An analysis of selected salamander prey abundance (excluding earthworms) at 4 sites showed that prey abundance declined with declining leaf litter. The loss of leaf litter layers due to non-native earthworm invasions appears to be negatively affecting woodland salamander abundance, in part, because of declines in the abundance of small arthropods that are a stable resource for salamanders. Our results demonstrate that earthworm invasions pose a significant threat to woodland amphibian fauna in the northeastern United States, and that plant invasions are symptomatic of degraded amphibian habitat but are not necessarily drivers of habitat degradation.


Subject(s)
Oligochaeta , Plants , Urodela , Animals , Environmental Monitoring , Plant Leaves , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...