Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Recent Adv Drug Deliv Formul ; 16(3): 217-233, 2022.
Article in English | MEDLINE | ID: mdl-35473532

ABSTRACT

BACKGROUND: Previous folkloric and experimental reports have demonstrated the antimalarial efficacy of Azadirachta indica (AZA) extracts. However, one of the major challenges facing its application for the clinical treatment of malaria is the design of an acceptable dosage form. OBJECTIVE: Consequently, we developed AZA extract-loaded nanostructured lipid carriers (NLC) for the formulation of suppositories, denoted as nanosuppositories, for intrarectal treatment of malaria. METHODS: Various batches of NLC-bearing AZA extract were formulated based on lipid matrices prepared using graded concentrations of Softisan®154 and Tetracarpidium conophorum or walnut oil. NLC was investigated by size and differential scanning calorimetry (DSC). Suppository bearing AZA extract-loaded NLC was developed using cocoa butter or theobroma oil, and their physicochemical properties were profiled. In vitro drug release and in vivo antimalarial activity (using Plasmodium berghei-infected mice) were investigated. RESULTS: NLCs exhibited sizes in nanometers ranging from 329.5 - 806.0 nm, and were amorphized as shown by DSC thermograms. Nanosuppositories were torpedo- or bullet- shaped, weighing 138 - 368 mg, softened/liquefied between 4.10 - 6.92 min, and had controlled release behaviour. In vivo antimalarial study revealed excellent antimalarial efficacy of the nanosuppositories comparable with a commercial brand (Plasmotrim®) and better than the placebo (unloaded nanosuppository), and without toxic alterations of hepatic and renal biochemical factors. CONCLUSION: Thus, AZA extract could be rationally loaded in nanostructured lipid carriers (NLC) for further development as nanosuppository and deployed as an effective alternative with optimum convenience for intrarectal treatment of malaria.


Subject(s)
Antimalarials , Azadirachta , Malaria , Mice , Animals , Antimalarials/pharmacology , Malaria/drug therapy , Plasmodium berghei , Lipids/chemistry
2.
Adv Pharm Bull ; 11(3): 543-556, 2021 May.
Article in English | MEDLINE | ID: mdl-34513630

ABSTRACT

Purpose: Biosurfactants are applied in drug formulations to improve drug solubility and in some cases, treat diseases. This study is focused on generating, extracting, purifying and then characterizing biosurfactants from bacterial isolates of palm oil wastes and abattoir soil origins. Methods: Eight bacteria were isolated from the soil and sludge samples, out of which four (50%) were found to produce biosurfactants. Bacillus subtilis (37.5%) and Pseudomonas aeruginosa (50%) were isolated and identified from these samples using mineral salt medium, nutrient agar and Cetrimide agar. Mutant isolates of B. subtilis BS3 and P. aeruginosa PS2 were used to produce biosurfactants using mineral salt medium as enrichment medium and extraction was done using membrane filter. Results: The mutant strains B. subtilis BS3 and P. aeruginosa PS2 generated biosurfactants that displayed significant solubility and dissolution properties by enhancing the percentage solubility of piroxicam to 62.86 and 54.29% respectively, and achieved 51.71 and 48.71% dissolution of the drug in 0.1N HCl. Conclusion: From the results obtained, the produced biosurfactants could serve as a better alternative to conventional surfactants. Notably, the study indicated that the biosurfactant produced by mutant strain of B. subtilis produced more potent activities (surface tension reduction ability, high emulsification) than those of P. aeruginosa.

SELECTION OF CITATIONS
SEARCH DETAIL
...