Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Mar Pollut Bull ; 193: 115141, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37295313

ABSTRACT

Taxa-specific responses to the increasing anthropogenic eutrophication offer promising insights for mitigating harmful algal blooms (HABs) in freshwaters. The present study evaluated the HABs species dynamics in response to the ecosystem anthropogenic enrichment during cyanobacterial-dominated spring HABs in the Pengxi River, Three Gorges Reservoir, China. Results show significant cyanobacterial dominance with a relative abundance (RA = 76.54 %). The ecosystem enrichments triggered shifts in the HABs community structure from Anabaena to Chroococcus, especially in the culture involving iron (Fe) addition (RA = 66.16 %). While P-alone enrichment caused a dramatic increase in the aggregate cell density (2.45 × 108 cells L-1), the multiple enrichment (NPFe) led to maximum biomass production (as chl-a = 39.62 ± 2.33 µgL-1), indicating that nutrient in conjunction with the HABs taxonomic characteristics e.g., tendency to possess high cell pigment contents rather than cell density can potentially determine massive biomass accumulations during HABs. The stimulation of growth as biomass production demonstrated by both P-alone and the multiple enrichments, NPFe indicates that although P exclusive control is feasible in the Pengxi ecosystem, it can only guarantee a short-term reduction in HABs magnitude and duration, thus a lasting HABs mitigation measure must consider a policy recommendation involving multiple nutrient management, especially N and P dual control strategy. The present study would adequately complement the concerted effort in developing a rational predictive framework for freshwater eutrophication management and HABs mitigations in the TGR and elsewhere with similar anthropogenic stressors.


Subject(s)
Anabaena , Cyanobacteria , Rivers , Ecosystem , Nitrogen/analysis , Eutrophication , Harmful Algal Bloom , China
2.
Aquat Toxicol ; 258: 106507, 2023 May.
Article in English | MEDLINE | ID: mdl-36965430

ABSTRACT

Secondary metabolites (toxins) production during harmful algal blooms (HABs) further increases the public health risks associated with water quality deterioration from anthropogenic eutrophication. In the present study, the dynamic pattern in the production of metabolites under different nutrient conditions in Ceratium-dominated spring HABs was investigated in Pengxi River, China. Results revealed five (5) important toxins all attributable to the Dinophyceae including azaspiracid 2&4, okadaic acid, tetrodotoxin, brevetoxin, and saxitoxin, each exhibiting certain levels of specificity to the ecosystem enrichments. In effect, while the production of azaspiracid 2 and okadaic acid was N-driven, azaspiracid 4 and tetrodotoxin were enhanced by Ca enrichment. The ambient HABs community structure shows absolute ecosystem dominance by a dinoflagellate, Ceratium hirundinella with relative abundance ((RA = 78.81%, p Ë‚ 0.05). However, P enrichment triggered a slight shift (p ≥ 0.05) in the HABs species structure within the cyanobacteria strictly represented by Chroococcus minor (RA = 26.60%) and Dolichospermum circinalis (RA = 23.91%) initiating possible emergency dominance. The effect of nutrient addition on biomass production as chlorophyll-a (Chl-a) confirmed a P-limited ecosystem juxtaposed by a secondary limitation by Ca. The significant stimulation on biomass as Chl-a from day 3 through day 4 by N and the multiple enrichments designated as NPFeCa was attributed to luxury consumption rather than limitation following N repletion thus delaying biomass accumulation. The study, therefore, offers useful insights into the dynamic pattern of toxins during spring HABs while it also provides comprehensive knowledge of the HABs impact predictions in the TGR.


Subject(s)
Cyanobacteria , Dinoflagellida , Water Pollutants, Chemical , Rivers/chemistry , Ecosystem , Okadaic Acid , Tetrodotoxin , Water Pollutants, Chemical/toxicity , Harmful Algal Bloom , Nutrients
3.
J Environ Manage ; 325(Pt A): 116547, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36419283

ABSTRACT

The mechanisms of phylogenetic turnover of microbial communities to environmental perturbations in sediments remain unclear. In this study, the molecular mechanisms of phylogenetic turnover, and impact of antibiotics and antibiotic resistance genes (ARGs) on the modification of microbial assemblages were unravelled. We investigated 306 ARGs, 8 transposases, and 4 integron integrases, bacteria, and eukaryotic diversity through high-throughput quantitative PCR and illumina sequencing, 21 antibiotics and 3 tetracycline byproducts. The freshwater and estuary ecosystems were mainly dominated by genus Sulfurovum and colonised by closely related species compared with the estuary (closeness centrality = 0.42 vs. 0.46), which was dominated by genus Mycobacterium. Eighty-six percent of the ecological process in the bacterial community was driven by stochastic processes, while the rest was driven by deterministic processes. Environmental-related concentrations of antibiotics (0.15-32.53 ng/g) stimulated the proliferation of ARGs which potentially modulated the microbial community assembly. ARG acquisition significantly (P < 0.001) increased eukaryotic diversity through protection mechanisms. ARGs showed complex interrelationships with the microbial communities, and phylum arthropods and Nematea demonstrated the strongest ARG acquisition potential. This study provides key insights for environmental policymakers into understanding the ecological impact of antibiotics and the role of ARGs in modulating the phylogenetic turnover of microbial communities and trophic transfer mechanisms.


Subject(s)
Anti-Bacterial Agents , Microbiota , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/analysis , Genes, Bacterial , Phylogeny , RNA, Ribosomal, 16S/genetics , Drug Resistance, Bacterial , Biodiversity , Bacteria/genetics
4.
Chemosphere ; 305: 135428, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35760129

ABSTRACT

The ecological impacts of antibiotics and antibiotic resistance genes (ARGs) on water ecology remain elusive in natural environments. We investigated the influence of antibiotics, ARGs and salinity gradient on the surface water ecosystem. Cefquinome (104.2 ± 43.6 ng/L) and cefminox (16.2 ± 7.50 ng/L) cephalosporins were predominant in all sites. Antibiotic contamination was increased in the estuary ecosystems compared to the freshwater ecosystems by 6%. Bacterial diversity could resist changes in salinity, but the relative abundance of some bacterial genera; Pseudoalteromonas, Glaciecola, norank_f__Arcobacteraceae, and Pseudohongiella was increased in the estuary zone (salinity>0.2%). The eukaryotic composition was increased in the subsaline environments (<0.2%), but the higher salinity in the saline zone inhibited the eukaryotic diversity. The relative abundance of ARGs was significantly higher in the estuary than in freshwater ecosystems, and ARGs interactions and mobile elements (aac(6')-Ib(aka_aacA4)-01, tetR-02, aacC, intI1, intI-1(clinic), qacEdelta1-01, and strB) were the predominant factors responsible for the ARGs propagation. Antibiotics associated with corresponding and non-corresponding ARGs and potentially created an adverse environment that increased the predation and pathogenicity of the aquatic food web and inhibited the metabolic functions. Surface water are first-line-ecosystems receiving antibiotics and ARGs hence our findings provided vital insights into understanding their ecological consequences on surface water ecosystems.


Subject(s)
Anti-Bacterial Agents , Microbiota , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Genes, Bacterial , Salinity , Water
5.
Sci Total Environ ; 839: 156183, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35623511

ABSTRACT

The microbial food-loop is critical to energy flow in aquatic food webs. We tested the hypothesis that species composition and relative abundance in a microbial community would be modified by the development of toxic algal blooms either by enhanced carbon production or toxicity. This study tracked the response of the microbial community with respect to composition and relative abundance during a 7-day algal bloom event in the Three Gorges Reservoir in May 2018. Chlorophyll a biomass, microscopic identification and cell counting of algae and algal abundance (ind. L-1) and carbon, nutrient concentrations (total phosphorus and nitrogen, dissolved total phosphorus and nitrogen), and DNA high throughput sequencing were measured daily. Algal density (1.2 × 109 ind. L-1) and Chlorophyll a (219 µg L-1) peaked on May 20th-21st, when the phytoplankton community was dominated by Chlorella spp. and Microcystis spp. The concentrations of both dissolved total nitrogen and phosphorus declined during the bloom period. Based on DNA high throughput sequencing data, the relative abundance of eukaryotic phytoplankton, microzooplankton (20-200 µm), mesozooplankton (>200 µm), and fungal communities varied day by day while the prokaryotic community revealed a more consistent structure. Enhanced carbon production during the bloom was closely associated with increased heterotrophic microbial composition in both the prokaryotic and eukaryotic communities. A storm event, however, that caused surface cooling and deep mixing of the water column greatly modified the composition and relative abundance of species in the microbial loop. The high temporal variability and dynamics observed in this study suggest that many factors, and not just algal blooms, were interacting to determine the composition and relative abundance of species of the microbial loop.


Subject(s)
Chlorella , Microbiota , Carbon , China , Chlorophyll A , Eutrophication , Nitrogen/analysis , Phosphorus/analysis , Phytoplankton
6.
Environ Pollut ; 303: 119103, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35283199

ABSTRACT

Nutrient availability, is a crucial anthropogenic stressor promoting freshwater eutrophication and rapid expansion of harmful algal blooms (HABs), deteriorating water quality and threatening public health worldwide. The estimation of the HABs community responses to diel changes in the nutrients while characterizing the ecosystem growth limiting factors, is key to prudent watershed management. The present study investigated the short-term variabilities in autumn cyanobacterial responses to the external nutrient inputs into the Pengxi River using the nutrient addition bioassay approach. Results reveal phytoplankton community structure dominated by the cyanobacteria: Anabaena and Aphanizomenon spp. (relative abundance = 46.20% equilibrium abundance), followed by the diatoms, out of which Lindayia bodaniica, are preponderant. Nutrient enrichment triggered strong variabilities in dominance and successions among the cyanobacterial group, with maximum dominance (76.34%) exhibited by the Aphanizomenon sp. upon NH4 addition. Fe enrichment led to the succession of cyanobacteria, Leptolyngbya tenuis, which was below the detectable limit in the control, indicating the role of Fe in its proliferation. Studies on nutrient limitation demonstrated P/NH4 co-limited ecosystem, with P as the primary and NH4, a secondary limiting factor. The nitrate preference index (NO3-RPI = 0.991) shows a high preference for NH4 while NO3 constitutes the bulk of the ecosystem TN. Considering the elevated NO3 concentration, we posit that a shift in the phytoplankton community structure from cyanobacteria to diatoms dominated ecosystem, is expected following Fe depletion and a further stretch on the current ecosystem NH4 limitation. The study provides useful and first-ever insights for nutrient reduction in the middle Three Gorges Reservoir (TGR) before the onset of the heavy HABs during spring in the Pengxi River.


Subject(s)
Cyanobacteria , Diatoms , Biological Assay , China , Ecosystem , Eutrophication , Female , Humans , Nitrogen/analysis , Nutrients , Phosphorus/analysis , Phytoplankton , Pregnancy , Rivers
7.
Bioresour Technol ; 344(Pt B): 126336, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34785331

ABSTRACT

In this study, a radial basis function neural network (RBFNN) model was developed and implemented in a multi-objective optimization procedure to determine the optimal hydraulic loading rate (HLR), hydraulic retention time (HRT), and mass loading rates (MLR) for enhanced removal of nitrogen and phosphorus by an integrated surface flow treatment wetland-pond system treating drinking source water in Yancheng, China. Prior to modelling, the system's 6-year nitrogen and phosphorus removal efficiencies were found to trend downwards as effluent concentrations trended positively. Meanwhile, operating parameter interaction effects impacted final effluent quality. Thus, total nitrogen and total phosphorus removal were simulated by an RBFNN model with satisfactory R2 of 0.99 and 0.98 respectively. Optimal average HLR, HRT and MLR for 80% simultaneous removal efficiencies were subsequently determined to be 0.10860 ± 0.03 md-1, 30.43 ± 9.96 d and 306.416 ± 89.54 mgm-2d-1 respectively. The results highlight the feasibility of the RBFNN modelling based optimization procedure for treatment wetlands.


Subject(s)
Water Purification , Wetlands , Neural Networks, Computer , Nitrogen , Phosphorus , Ponds , Waste Disposal, Fluid
8.
J Environ Manage ; 304: 114313, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34942548

ABSTRACT

Environmental pollution mitigation measure involving bioremediation technology is a sustainable intervention for a greener ecosystem biorecovery, especially the obnoxious hydrocarbons, xenobiotics, and other environmental pollutants induced by anthropogenic stressors. Several successful case studies have provided evidence to this paradigm including the putative adoption that the technology is eco-friendly, cost-effective, and shows a high tendency for total contaminants mineralization into innocuous bye-products. The present review reports advances in bioremediation, types, and strategies conventionally adopted in contaminant clean-up. It identified that natural attenuation and biostimulation are faced with notable limitations including the poor remedial outcome under the natural attenuation system and the residual contamination occasion following a biostimulation operation. It remarks that the use of genetically engineered microorganisms shows a potentially promising insight as a prudent remedial approach but is currently challenged by few ethical restrictions and the rural unavailability of the technology. It underscores that bioaugmentation, particularly the use of high cell density assemblages referred to as microbial consortia possess promising remedial prospects thus offers a more sustainable environmental security. The authors, therefore, recommend bioaugmentation for large scale contaminated sites in regions where environmental degradation is commonplace.


Subject(s)
Environmental Restoration and Remediation , Petroleum , Soil Pollutants , Anthropogenic Effects , Biodegradation, Environmental , Ecosystem , Hydrocarbons , Soil Microbiology , Soil Pollutants/analysis , Technology
9.
Environ Monit Assess ; 193(8): 469, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34226963

ABSTRACT

Recently, reservoirs in southern China are witnessing incidents involving black water, which are harmful to the aquatic ecosystem. This study unravels the cause of the black water events by studying the occurrence and the ecological risks of contaminants (Pb, Cu, Cd, Zn, Ni, TFe, Mn, S, P, and DOC) in sediments of Tianbao reservoir. Due to the significantly high concentration of TFe, Mn, and P in the sediments, the study further used the thin film diffusion gradient (DGT) technology and high-resolution dialysis method to investigate the movement of Fe2+, Mn2+, S2-, and reactive P within the sediments. The ecological risk assessment (threshold effect level and probable effect level) showed that the sediments had a low concentration of Pb, Cu, Cd, Zn, and Ni. High organic matter from the Eucalyptus plantation surrounding the reservoir, as well as the intense thermal stratification of the reservoir, caused the hypolimnion to be hypoxic (DO < 2 mg/L). The diffusion fluxes at the water-sediment boundary (WSB) demonstrated a significant movement of Fe2+, Mn2+, and PO43- from the sediments into the overlying water, while the movement of S2- was in both directions due to hypoxia. A high correlation Fe-DOC (r = 0.9), Fe-S (r = 0.8), and Mn-S (r = 0.7) and the redox interaction of Fe2+, Mn2+, S2-, P, and DOC at the hypoxic WSB caused the production of black substances in the hypolimnion contributing to the so-called black water reservoir.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , China , Ecosystem , Environmental Monitoring , Geologic Sediments , Metals, Heavy/analysis , Renal Dialysis , Water Pollutants, Chemical/analysis
10.
Environ Sci Pollut Res Int ; 28(21): 26717-26731, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33495950

ABSTRACT

The management of black water depends primarily on the knowledge of the dynamics of organic matter (OM), iron (Fe), sulfide (S), and manganese (Mn), at the water-sediment boundary (WSB). However, the mechanistic path of these substances leading to black water remains unsettled. In this study, a 35-day field study was conducted using the thin-film diffusion gradient technology (DGT) and the planar optrode to address the unknown combined effects of Fe, Mn, OM, S, and tannins from Eucalyptus species on Tianbao reservoir.Our results indicated that the hypolimnion was hypoxic due to thermal stratification, which caused the reduction of insoluble Fe and Mn from sediments to bottom water. Correlation analysis (Fe:S (r:0.5-0.9); Mn:S (r:0.2-0.8)) and elevated fluxes (Fe2+, Mn2+, S2-) connoted that these parameters interacted chemically to give black matter. The content of OM, Fe2+, and tannic acid in the benthic region diminished remarkably (p < 0.05) from day 1 (strong stratification) to day 35 (weak stratification), connoting that these parameters also interacted chemically to give black matter. The turbidity (clarity of the water) increased from day 1 to 35 with a significant difference (p < 0.05) recorded on day 14 confirming that black water was formed on this day when the thermal structure of the reservoir was annihilated. Correlation analysis supported the assertion that the variability in oxygen and redox conditions caused changes in Fe, Mn, and OM content at the WSB.The finding from the field research provides useful information to stakeholders on how to improve the quality of freshwater management designs.


Subject(s)
Eucalyptus , Water Pollutants, Chemical , China , Environmental Monitoring , Geologic Sediments , Hypoxia , Iron/analysis , Water , Water Pollutants, Chemical/analysis
11.
Environ Sci Pollut Res Int ; 27(28): 34927-34940, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32577983

ABSTRACT

Tianbao reservoir in southern China (surrounded by Eucalyptus plantation) serves as a source of drinking water for the inhabitants. However, the reservoir water experiences black water (BW) of which the cause remains unclear. In this study, field observation and simulated laboratory experiment were conducted to understand the cause of the BW. The diffusive gradient in thin-film (DGT) device monitored the spatial changes in concentration of iron (Fe2+), manganese (Mn2+), sulfide (S2-), and dissolved organic carbon (DOC) at the SWI. The planar optode (PO) showed that hypoxia contributed immensely to the high positive fluxes Fe2+, Mn2+, and S2- measured, which co-precipitated to form black materials (FeS and MnS) at the SWI. The co-precipitation between Fe-S and Mn-S was supported by their significant positive correlation (Fe-S: r > 0.05, p < 0.05, Mn-S: r > 0.2, p < 0.05). Significant reduction (p < 0.05) in tannins concentration from November (strong thermal stratification) to December (weak thermal stratification) indicated that Fe2+ and tannins reacted during the mixing of reservoir water in December due to weak stratification. The simulated experiment confirmed that fresh Eucalyptus leaves produces a significant (p < 0.05) amount of tannins during hypoxia and reacts with Fe2+ to produce black water. A high positive correlation (r > 0.8) between Fe2+ and DOC demonstrated that Fe2+ and DOC combined and contributed to the reservoir water blackening. The study provides a better understanding on the impact of Eucalyptus plantation on water quality and provide guidance for scientific planting of Eucalyptus plantation in reservoir basins in southern China to ensure safe drinking water.


Subject(s)
Eucalyptus , Water Pollutants, Chemical/analysis , China , Environmental Monitoring , Iron/analysis , Water
12.
Article in English | MEDLINE | ID: mdl-32545158

ABSTRACT

Algal blooms have thrived on the third-largest shallow lake in China, Taihu over the past decade. Due to the recycling of nutrients such as nitrate and ammonium, this problem has been difficult to eradicate. Sediment flux, a product of diagenesis, explains the recycling of nutrients. The objective was to simulate the seasonal spatial variations of nitrate and ammonium flux. In this paper, sediment diagenesis modeling was applied to Taihu with Environmental Fluid Dynamics Code (EFDC). Latin hypercube sampling was used to create an input file from twelve (12) nitrogen related parameters of sediment diagenesis and incorporated into the EFDC. The results were analyzed under four seasons: summer, autumn, winter, and spring. The concentration of NH4-N in the sediment-water column increased from 2.744903 to 22.38613 (g/m3). In summer, there was an accumulation of ammonium in the water column. In autumn and winter, the sediment was progressively oxidized. In spring, low-oxygen conditions intensify denitrification. This allows algal blooms to continue to thrive, creating a threat to water quality sustainability. The sediment diagenesis model, coupled with water quality measured data, showed an average relative error for Total Nitrogen (TN) of 38.137%, making the model suitable. Future studies should simulate phosphate flux and measure sediment fluxes on the lake.


Subject(s)
Ammonium Compounds , Environmental Monitoring , Eutrophication , Geologic Sediments , Models, Theoretical , Water Pollution/statistics & numerical data , China , Lakes , Nitrogen , Phosphorus , Seasons
13.
J Environ Manage ; 271: 110971, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32579524

ABSTRACT

The rational eutrophication management largely depends on the knowledge of the dynamics in the dissolved inorganic nutrients especially nitrogen forms which trigger exponential primary productivity in eutrophic systems. The present study investigated the phytoplankton interactions with the dissolved N forms, nitrate (NO3) and ammonium (NH4) in a sub-tropical Yangtze River tributary, China vulnerable to multiple anthropogenic stressors following the impoundment of the largest hydraulic structure, the Three Gorges Dam. Results indicated strong NO3 inhibition by the low NH4 pool exerting toxic effects on the major phytoplankton groups, particularly the Bacilliariophyta (relative abundance < 1%) while significant Cyanophyta proliferation prevailed (relative abundance ≥ 90%). Strong N limitation exacerbated by NH4 deficit and P replete condition characterizes the summer bloom in the tributary. The biomass attenuation kinetics revealed significantly fast NH4 metabolism, half-life (t1/2= 1.4 d, K = 0.00750 ± 0.004 d-1) as the first-order rate adequately fitted into the experimental data although, the second-order rate also demonstrated considerable goodness of fit. The growth responses induced by the Si enrichment potentially suggested possible secondary limitation by Si with the likelihood of intensification should the ecosystem phytoplankton community dominance shifts from Cyanophyta to the Bacilliariophyta. The response of P enrichment on growth was attributed to luxury consumption rather than limitation as responses only became significant towards the end of the study. The study, therefore, presents the first report of biomass ageing rate worthy of incorporation into the recent bloom management protocol for the development of predictive ecosystem dynamics.


Subject(s)
Ammonium Compounds/analysis , Phytoplankton , China , Ecosystem , Environmental Monitoring , Eutrophication , Nitrogen/analysis , Seasons
14.
Environ Pollut ; 264: 114626, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32387673

ABSTRACT

Most aquatic systems show characteristic seasonal fluctuations in the total nutrient pool supporting primary productivity. The nutrient dynamics essentially exacerbate critical demand for the counterpart micronutrients towards achieving ecosystem equilibrium. Herein, the phytoplankton demand for iron (Fe) uptake under high concentration of nitrate-nitrogen during spring in Xiangxi Bay, China, was studied. Our result confirmed that significant Fe concentrations (P = 0.01) in both autumn (0.62 ± 0.02 mgL-1) and winter (0.06 ± 0.03 mgL-1) relative to spring (0.004 ± 0.01 mgL-1) are linked to the low NO3-N paradigms during autumn and winter. As NO3-N showed a sharp increase in spring, a dramatic reduction in the Fe pool was observed in the entire tributary, driving the system to a critical Fe limited condition. Bioassay study involving Fe additions both alone and in combinations led to maximum growth stimulation with biomass as chla (16.44 ± 0.82 µgL-1) and phytoplankton cell density (6.75 × 106 cellsL-1) which differed significantly (P = 0.03) with the control. Further, the study demonstrated that Fe additions triggered biomass productions which increased linearly with cell densities. The P alone addition caused biomass production (15.26 ± 2.51 µgL-1) greater than both NO3-N (9.15 ± 0.66 µgL-1) and NH4+N (13.65 ± 1.68 µgL-1) separate additions but reported a low aggregate cell density (3.18 × 106 cellsL-1). This indicates that nutrient and taxonomic characteristics e.g., high cell pigment contents rather than just the cell bio-volume also determine biomass. The Bacilliarophyta, Chlorophyta, and Cryptophyta with the total extinction of Cyanophyta characterized the bloom in spring. The anthropogenic NO3-N input into XXB would have driven to higher NO3-N than NH4+N situation, and incapacitated the Cyanophyta that preferentially utilize NH4+N. Our study provides a useful report for incorporation into the monitoring programs for prudent management of phytoplankton bloom and pollution across the eutrophic systems.


Subject(s)
Phytoplankton , Rivers , Biomass , China , Chlorophyll A , Ecosystem , Iron , Nitrogen/analysis , Seasons
15.
Sci Total Environ ; 724: 138204, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32408451

ABSTRACT

The deterioration of reservoirs in southern China due to the kinetics of Iron (Fe), Phosphorus (P) and sulphide (S) at the sediment-water interface (SWI) is a major problem that needs urgent attention. Studies on the biogeochemistry of Fe, P, and S using high-resolution profile techniques in reservoirs in this region are limited. The diffusive gradient in thin films (DGT) technique, high-resolution dialysis, DGT-computer imaging densitometry (CID), DGT-induced fluxes in sediments (DIFS) and planar optode (PO) device were used to describe the dynamics Fe-P-S in SWI during hypoxia. The results showed the release of Fe-P-S in SWI was due to sulfate reduction and iron reduction influenced greatly by hypoxia. Positive apparent fluxes were recorded indicating that the sediments release Fe-P-S to the overlying water. High positive correlations (r2 > 0.7) for DGT-labile Fe and DGT-labile P in sediments revealed that iron-bound P controlled the release of P at SWI during reductive dissolution. The low correlation between DGT-labile Fe and DGT-labile S (r2 < 0.4) disclosed the combative nature between sulfate reduction and iron reduction process. The low correlation occurred because of the co-precipitation between Fe and S, forming black materials such as monosulfide (FeS) and pyrite (FeS2) in a hypoxic environment. The DIFS model showed the resupply ability (R-values) of P in sediments belonged to the partially sustained case with a steady state case of resupply at TB3 (Tc = 1088s, Kd = 1005.61 cm3/g R = 0.72, K-1 = 0.19 day-1) and TB4 (Tc = 712 s, Kd = 712.53 cm3/g, R = 0.78, K-1 = 0.46 day-1). The resupply rate belonged to the non-steady state case at TB1 (Tc = 10,990 s, Kd = 396.3 cm3/g, R = 0.35, K-1 = 0.07 day-1) and TB2 (Tc = 6097 s, Kd = 578.5 cm3/g, R = 0.45, K-1 = 0.10 day-1). The DGT-CID-PO-DIFS provided a deep insight on the mechanism of Fe-P-S and remobilization of P at SWI leading to Blackwater events and eutrophication.

16.
Sci Total Environ ; 723: 138062, 2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32217395

ABSTRACT

After the impoundment of the Three Gorges Reservoir (TGR), algal blooms in the sidearm tributaries have resulted from increasing nutrient loads along the major tributaries. Field sampling and in situ nutrient addition bioassay were implemented to examine the nutrient limitation of phytoplankton growth and bloom initiation during autumn in Xiangxi Bay of the TGR. Result shows that P is the primary limiting nutrient for algal growth and bloom in Xiangxi Bay during autumn. The treatment involving the combination of N, P and Si had a significant (p < .05) additional effect on the growth of phytoplankton. The N, P, Si combined treatment increased growth by 10-50% relative to the N and P treatments from day 1 to day 4, respectively. Trace metal additions involving Fe, Zn, Mn, and Cu and/or in combination with N, P, and Si initially resulted in an extremely low growth rate which later increased significantly (p < .05) towards the end of the study. The present study provides an insight into the responses of different phytoplankton taxa in autumn under nutrient conditions in the tributary bay. The nutrient limitation study is recognized as the first step to mitigating the bloom while proposing an effective nutrient control strategy. The outcome of which can provide the basis for formulating sustainable watershed management. Multiple nutrients reductions with P as primary concern are required for a lasting management solution to the risk of bloom in the TGR.


Subject(s)
Bays , Phytoplankton , China , Environmental Monitoring , Eutrophication , Nitrogen/analysis , Nutrients , Phosphorus/analysis
17.
Chemosphere ; 247: 125960, 2020 May.
Article in English | MEDLINE | ID: mdl-32069727

ABSTRACT

The increasing freshwater ecosystem nutrient budget is a critical anthropogenic factor promoting freshwater eutrophication and episodic bloom of harmful algae which threaten water quality and public health. To understand how the eutrophic freshwater ecosystem responds in term of phytoplankton community structure dynamics to a sudden rise in nutrient concentrations, a microcosm study by nutrient addition bioassay was implemented in Xiangxi Bay (XXB) of Three Gorges Reservoir, China. Our results showed that dissolved trace elements supply adequately altered the phytoplankton community structure creating a regime shift from cyanobacteria-dominated to essentially Chlorophytes-dominated system, relative abundance (>70%). Combined N, P, and Si led to maximum growth stimulation accompanied by the highest chlorophyll yield (82.7 ± 14.01 µgL-1) and growth rate (1.098 ± 0.12 µgL-1d-1). N separate additions resulted in growth responses which did not differ while P -addition differed significantly (p∠0.05) with the control justifying a P limited system. Si enrichment stimulated diatom growth, relative abundance (20.62%) and maximum utility rate (USi = 83.37 ± 0.33%). This study also reveals that increasing nutrient loading from anthropogenic sources adequately decrease the ecological diversity (H < 1) and community overlap (CC ≤ 0.5) intensifying competition and succession which then select the fast-growing taxa to dominate and expand. Result points to the need for multiple nutrient control of N, P and Si loading into XXB through a prudent nutrient management protocol for lasting bloom mitigation in the tributary bay.


Subject(s)
Ecosystem , Nutrients/pharmacology , Phytoplankton/growth & development , Bays , Biological Assay , China , Chlorophyll/analysis , Cyanobacteria/growth & development , Diatoms/growth & development , Eutrophication , Fresh Water/chemistry
18.
Environ Technol ; 41(3): 339-348, 2020 Jan.
Article in English | MEDLINE | ID: mdl-30028277

ABSTRACT

The integration of first and second order kinetic model in parameter estimation for the degradation pattern of total petroleum hydrocarbon (TPH) in spent lubricating petroleum oil (SLPO) over a four-month period was the subject of the present investigation. Study design considered four treatment microcosms notably; sewage sludge (SB), monitored natural recovery (MNR), surfactant (SA) and control (SO). The rate of TPH degradation using sewage sludge as amendment material depicted effective TPH removal within ten weeks. A maximum allowable concentration of residual TPH (4300 mg kg-1) was obtained through an amendment with sewage sludge. Degradation constant (k) produced by both first and second order rates significantly demonstrated the performance of sewage sludge biomass over the other three treatments applied, however, experimental data adequately fitted into the first order kinetics (k = 0.27 d-1, t½ = 3.0 d). TPH removal efficiency of sewage sludge and detergent were 96.0% and 81.0% respectively. The use of sewage sludge biomass significantly (p < .05) improved soil biological characteristics and produced optimum dehydrogenase activity (DHA ≥ 8.8 TPFg-1 d), germination index (%IG ≥ 88%), and chlorophyll content (chl ≥ 100 µg cm-2), thus, recommended for field scale application in soil hydrocarbon pollution remediation.


Subject(s)
Petroleum , Soil Pollutants , Biodegradation, Environmental , Hydrocarbons , Kinetics , Sewage , Soil , Soil Microbiology
19.
3 Biotech ; 9(12): 449, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31832296

ABSTRACT

The present review reports all management approaches (physical, chemical, and biological) traditionally adopted in mitigating the global impact of harmful cyanobacterial blooms (cyanoHABs). It recognizes that each mitigation strategy shows characteristic associated limitations and notes that no remedial step has provided a sustainable solution to HABs on a global scale. It emphasizes that the putative anthropogenic N&P inputs reduction through improved wastewater treatment and regulation of point and non-point sources-agricultural fertilizers only offer a short term solution. These approaches are rather preventive than curative hence, do not address concerns relating to the recovery of already-eutrophic and hypereutrophic systems. It raises new concerns on the implications of non-agricultural pollutants such as hydrocarbon fractions in bloom accretions often neglected while addressing HAB triggers. It also accesses the global impacts of HABs as it pertains to socio-economic implications in the geographically diverse world. It, therefore, proposes that Integrated Management Intervention involving the merging of two or more mitigation steps be administered across the aquatic continua as a prudent management solution to complement the current N&P dual management paradigm. It stresses that the contemporaneous adoption of management options with both preventive and curative measures is a key to sustainable HAB management. This review provides sufficient advances and current scenarios for approaching cyanoHABs. Further, it advocates that future research perspectives tackle the mitigation design beyond the short-term nutrient regulations and the parochial attention to the point and non-point N&P input sources.

20.
Sci Rep ; 9(1): 13100, 2019 09 11.
Article in English | MEDLINE | ID: mdl-31511608

ABSTRACT

Surface sediment samples were collected from four areas (the Jingdezhen Industrialized Area (JDZ), Upstream (UP), the Dexing Mining Area (DX), and Downstream (DM)) to investigate the concentration and chemical composition of heavy metals. The sediments were analysed for Cu, Zn, Pb, Cd, Cr, As, and Ni using a sequential extraction scheme according to the improved BCR (European Community Bureau of Reference) method. The obtained results show that the maximum values of Cu (793.52 µg·g-1), Zn (72.09 µg·g-1), Pb (222.19 µg·g-1), and Cd (1.60 µg·g-1) were collected from the DX sampling area, while the JDZ area had the highest concentrations of Cr (97.09 µg·g-1), As (318.05 µg·g-1), and Ni (66.35 µg·g-1). The majority of metal values far exceeded their corresponding background values. The risk analysis of geo-accumulation index (Igeo) indicated that the heavy metals Cu and As were the main pollution factors and each element of the pollution degree followed the order of: Cu > As > Pb > Cd > Cr > Zn. Metal partitioning characteristics were also considered and more than 80% of metals show potential bioavailability and toxic effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...