Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Emerg Microbes Infect ; 13(1): 2294859, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38088796

ABSTRACT

Identification of the diverse animal hosts responsible for spill-over events from animals to humans is crucial for comprehending the transmission patterns of emerging infectious diseases, which pose significant public health risks. To better characterize potential animal hosts of Lassa virus (LASV), we assessed domestic and non-domestic animals from 2021-2022 in four locations in southern Nigeria with reported cases of Lassa fever (LF). Birds, lizards, and domestic mammals (dogs, pigs, cattle and goats) were screened using RT-qPCR, and whole genome sequencing was performed for lineage identification on selected LASV positive samples. Animals were also screened for exposure to LASV by enzyme-linked immunosorbent assay (ELISA). Among these animals, lizards had the highest positivity rate by PCR. Genomic sequencing of samples in most infected animals showed sub-lineage 2 g of LASV. Seropositivity was highest among cattle and lowest in pigs. Though the specific impact these additional hosts may have in the broader virus-host context are still unknown - specifically relating to pathogen diversity, evolution, and transmission - the detection of LASV in non-rodent hosts living in proximity to confirmed human LF cases suggests their involvement during transmission as potential reservoirs. Additional epidemiological data comparing viral genomes from humans and animals, as well as those circulating within the environment will be critical in understanding LASV transmission dynamics and will ultimately guide the development of countermeasures for this zoonotic health threat.


Subject(s)
Lassa Fever , Lassa virus , Humans , Animals , Cattle , Dogs , Swine , Lassa virus/genetics , Lassa Fever/epidemiology , Lassa Fever/veterinary , Lassa Fever/genetics , Nigeria/epidemiology , Genome, Viral , Public Health , Mammals
2.
Microbiol Spectr ; 10(4): e0036622, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35913205

ABSTRACT

The dynamics of Lassa virus (LASV) infections in rodent reservoirs and their endemic human caseloads remain poorly understood. During the endemic period, human infections are believed to be associated with the seasonal migration of Mastomys natalensis, thought to be the primary reservoir that triggers multiple spillovers of LASV to humans. It has become imperative to improve LASV diagnosis in rodents while updating their prevalence in two regions of Lassa fever endemicity in Nigeria. Rodents (total, 942) were trapped in Ondo (531) and Ebonyi (411) states between October 2018 and April 2020 for detection of LASV using various tissues. Overall, the LASV prevalence was 53.6%. The outbreak area sampled in Ondo had three and two times higher capture success and LASV prevalence, respectively, than Ebonyi State. This correlated with the higher number of annual cases of Lassa fever (LF) in Ondo State versus Ebonyi State. All rodent genera (Mastomys, Rattus, Crocidura, Mus, and Tatera) captured in both states showed slightly variable LASV positivity, with Rattus spp. being the most predominantly infected (77.3%) rodents in Ondo State versus Mastomys spp. (41.6%) in Ebonyi State. The tissues with the highest LASV positivity were the kidneys, spleen, and testes. The finding of a relatively high LASV prevalence in all of the rodent genera captured highlights the complex interspecies transmission dynamics of LASV infections in the reservoirs and their potential association with increased environmental contact, as well as the risk of zoonotic spillover in these communities, which have the highest prevalence of Lassa fever in Nigeria. IMPORTANCE Our findings show the highest LASV positivity in small rodents ever recorded and the first direct detection of LASV in Tatera spp. Our findings also indicate the abundance of LASV-infected small rodents in houses, with probable interspecies transmission through vertical and horizontal coitus routes. Consequently, we suggest that the abundance of different reservoir species for LASV may fuel the epizootic outbreaks of LF in affected human communities. The high prevalence of LASV with the diversity of affected rodents has direct implications for our understanding of the transmission risk, mitigation, and ultimately, the prevention of LF in humans. Optimal tissues for LASV detection in rodents are also presented.


Subject(s)
Epidemics , Lassa Fever , Animals , Humans , Lassa Fever/epidemiology , Lassa Fever/prevention & control , Lassa Fever/veterinary , Lassa virus , Murinae , Nigeria/epidemiology , Prevalence , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...