Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anemia ; 2024: 5431000, 2024.
Article in English | MEDLINE | ID: mdl-38533265

ABSTRACT

Aim: Sickle cell disease has witnessed a 41.4% surge from 2000 to 2021, significantly affecting morbidity and mortality rates, particularly in children from regions with elevated under-5 mortality rates. Gut microbiota dysbiosis is increasingly recognised in SCD, exacerbating complications, particularly chronic pain, marked by significant alterations of proinflammatory bacteria abundance. This review explores the therapeutic potential of Akkermansia muciniphila and Roseburia spp. in alleviating SCD-related complications, emphasising their roles in maintaining gut barrier integrity, reducing inflammation, and modulating immune responses. Method: A literature search up to November 2023 using PubMed, MEDLINE, and Google Scholar databases explored SCD pathophysiology, gut microbiota composition, Akkermansia muciniphila and Roseburia spp. abundance, pain and gut dysbiosis in SCD, and butyrate therapy. Result: A. muciniphila and Roseburia spp. supplementation shows promise in alleviating chronic pain by addressing gut dysbiosis, offering new avenues for sustainable SCD management. This approach holds the potential for reducing reliance on reactive treatments and improving overall quality of life. This research underscores the pivotal role of the gut microbiome in SCD, advocating for personalised treatment approaches. Conclusion: Further exploration and clinical trials are needed to harness the full potential of these gut bacteria for individuals affected by this challenging condition.

2.
Int J Med Mushrooms ; 25(5): 1-15, 2023.
Article in English | MEDLINE | ID: mdl-37183915

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 is characterized by acute respiratory distress syndrome (ARDS) facilitated by cytokine storm and other risk factors that increase susceptibility and complications leading to death. Emerging as a major global public health challenge, the disease has claimed more than 6 million lives and caused catastrophic global economic disruptions. However, there are concerns about the safety as well as the efficacy of drugs and vaccines presently used to control the pandemic, therefore necessitating intense global search for safe natural products that can effectively and safely combat it. This work reviews studies on lingzhi or reishi medicinal mushroom, Ganoderma lucidum and its properties that may potentially combat SARS-CoV-2 infection and the co-morbidities. Available evidence suggests that medicinal properties of the Ganoderma mushroom can combat the complications of SARS-CoV-2 infection and the co-morbidities that can aggravate the severity of the disease. Preclinical and clinical evaluation to establish dose, efficacy, and potential toxicity and possible use in the management of COVID-19 is recommended.


Subject(s)
Agaricales , COVID-19 , Reishi , Humans , Cytokine Release Syndrome/drug therapy , SARS-CoV-2
3.
Clin Exp Vaccine Res ; 11(3): 249-263, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36451670

ABSTRACT

Purpose: Lassa fever is a zoonotic acute viral hemorrhagic disease caused by Lassa virus (LASV). There is currently no licensed vaccine for the prevention of the disease. This study is aimed at discovering immunodominant epitopes from the envelope glycoprotein of the Lassa mammarenavirus and designing of a multi-epitope vaccine candidate (VC). Materials and Methods: The amino acid sequences of the envelope glycoprotein of 26 strains of LASV from five countries were selected. After evaluation for antigenicity, immunogenicity, allergenicity, and toxicity, immunodominant CD8, CD4, and linear B lymphocytes were also selected. The selected epitopes were modelled and a molecular docking with the appropriate major histocompatibility complex (MHC) proteins was performed. Using an adjuvant and linkers, a multi-epitope VC was designed. The VC was evaluated for its physicochemical and immunological properties and structurally refined, validated, and mutated (disulphide engineering). The complex formed by the VC and the toll-like receptor-4 receptor was subjected to molecular dynamic simulation (MDS) followed by in silico cloning in a plasmid vector. Results: A VC with 203 sequences, 22.13 kDa weight, isoelectric point of 9.85 (basic), instability index value of 27.62, aliphatic index of 68.87, and GRAVY value of -0.455 (hydrophilic) emerged. The VC is predicted to be non-allergenic with antigenicity, MHC I immunogenicity, and solubility upon overexpression values of 0.81, 2.04, and 0.86 respectively. The VC also has an estimated half-life greater than 10 hours in Escherichia coli and showed stability in all the parameters of MDS. Conclusion: The VC shows good promise in the prevention of Lassa fever but further tests are required to validate its safety and efficacy.

SELECTION OF CITATIONS
SEARCH DETAIL
...