Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Insect Sci ; 4: 1328235, 2024.
Article in English | MEDLINE | ID: mdl-39006941

ABSTRACT

Lablab (Lablab purpureus L.) is an important food and livestock feed legume that can also enhance soil fertility. However, its production is limited by insect pests, notably the black bean aphid (Aphis fabae). The present field study was conducted to determine the difference in the contribution of lablab genotypes and natural field margin vegetation (FMV) to the abundance and diversity of natural enemies and the damage, incidence, and abundance of bean aphids. Eighteen lablab genotypes were planted in the presence or absence of FMV in a randomized complete block design experiment replicated four times. Data on aphid abundance, incidence, and severity of damage were collected at four growth stages of the crop. Lablab genotypes significantly influenced aphid incidence, suggesting some level of tolerance to aphid colonization. Findings showed that lablab genotypes were a significant influence on natural enemy species richness with no statistical difference for abundance and natural enemy species diversity. However, the genotypes did not vary significantly in their influence on the number of aphid natural enemies. FMV was associated with low bean aphid damage. Overall, the presence or absence of FMV did not influence the number of natural enemies caught on the crop. This concurs with recent work that shows a similar number of natural enemies with field margin plants but may reflect the reduced number of pest insects. Cropping seasons influenced aphid abundance and damage severity, with the populations developing at the early stages of lablab development and decreasing as the crop advanced. This pattern was similar both in the presence or absence of FMV. The findings of this study highlight the important contribution of crop genotype together with the presence of field margin species in the regulation of aphids and their natural enemies in lablab.

2.
J Appl Entomol ; 146(7): 838-849, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36249719

ABSTRACT

Botanical insecticides offer an environmentally benign insect pest management option for field crops with reduced impacts on natural enemies of pests and pollinators while botanically rich field margins can augment their abundance. Here, we evaluated the non-target effects on natural enemies and pest control efficacy on bean aphids in Lablab of three neem- and pyrethrum-based botanical insecticides (Pyerin75EC®, Nimbecidine® and Pyeneem 20EC®) and determine the influence of florally rich field margin vegetation on the recovery of beneficial insects after treatment. The botanical insecticides were applied at the early and late vegetative growth stages. Data were collected on aphids (abundance, damage severity and percent incidence) and natural enemy (abundance) both at pre-spraying and post-spraying alongside Lablab bean yield. The efficacy of botanical insecticides was similar to a synthetic pesticide control and reduced aphid abundance by 88% compared with the untreated control. However, the number of natural enemies was 34% higher in botanical insecticide-treated plots than in plots treated with synthetic insecticide indicating that plant-based treatments were less harmful to beneficial insects. The presence of field margin vegetation increased further the number of parasitic wasps and tachinid flies by 16% and 20%, respectively. This indicated that non-crop habitats can enhance recovery in beneficial insect populations and that botanical insecticides integrate effectively with conservation biological control strategies. Higher grain yields of 2.55-3.04 and 2.95-3.23 t/ha were recorded for both botanical insecticide and synthetic insecticide in the presence of florally enhanced field margins in consecutive cropping seasons. Overall, these data demonstrated that commercial botanical insecticides together with florally rich field margins offer an integrated, environmentally benign and sustainable alternative to synthetic insecticides for insect pest management and increased productivity of the orphan crop legume, Lablab.

SELECTION OF CITATIONS
SEARCH DETAIL
...