Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 62(23): 3411-3419, 2023 12 05.
Article in English | MEDLINE | ID: mdl-38010074

ABSTRACT

Cellular nucleic acids are subject to assault by endogenous and exogenous agents that can perturb the flow of genetic information. Oxidative stress leads to the accumulation of 8-oxoguanine (8OG) in DNA and RNA. 8OG lesions on mRNA negatively impact translation, but their effect on global RNA-protein interactions is largely unknown. Here, we apply an RNA chemical proteomics approach to investigate the effect of 8OG on RNA-protein binding. We find proteins that bind preferentially to 8OG-modified RNA, including IGF2BP1-3 and hnRNPD, and proteins that are repelled by 8OG such as RBM4. We characterize these interactions using biochemical and biophysical assays to quantify the effect of 8OG on binding and show that a single 8OG abolishes the binding of RBM4 to its preferred CGG-containing substrate. Taken together, our work establishes the molecular consequences of 8OG on cellular RNA-protein binding and provides a framework for interrogating the role of RNA oxidation in biological systems.


Subject(s)
DNA Repair , Oxidative Stress , DNA Damage , RNA
2.
MicroPubl Biol ; 20222022.
Article in English | MEDLINE | ID: mdl-36411799

ABSTRACT

In Caenorhabditis elegans, many genes involved in the formation of the cuticle are also known to influence body size and shape. We assessed post-embryonic growth of both long and short C. elegans body size mutants from the L1 to L4 stage. We found similar developmental trajectories of N2 and lon-3 animals. By contrast, we observed overall decreases in body length and increases in body width of tested dpy mutants compared to N2, consistent with the Dpy phenotype. We further show that the dynamics of animal shape in the mutant strains are consistent with a previously proposed "Stretcher" growth model.

3.
Toxicology ; 479: 153292, 2022 09.
Article in English | MEDLINE | ID: mdl-35995124

ABSTRACT

The genetic variability of toxicant responses among indisviduals in humans and mammalian models requires practically untenable sample sizes to create comprehensive chemical hazard risk evaluations. To address this need, tractable model systems enable reproducible and efficient experimental workflows to collect high-replication measurements of exposure cohorts. Caenorhabditis elegans is a premier toxicology model that has revolutionized our understanding of cellular responses to environmental pollutants and boasts robust genomic resources and high levels of genetic variation across the species. In this study, we performed dose-response analysis across 23 environmental toxicants using eight C. elegans strains representative of species-wide genetic diversity. We observed substantial variation in EC10 estimates and slope parameter estimates of dose-response curves of different strains, demonstrating that genetic background is a significant driver of differential toxicant susceptibility. We also showed that, across all toxicants, at least one C. elegans strain exhibited a significantly different EC10 or slope estimate compared to the reference strain, N2 (PD1074), indicating that population-wide differences among strains are necessary to understand responses to toxicants. Moreover, we quantified the heritability of responses (phenotypic variance attributable to genetic differences between individuals) to each toxicant exposure and observed a correlation between the exposure closest to the species-agnostic EC10 estimate and the exposure that exhibited the most heritable response. At least 20% of the variance in susceptibility to at least one exposure level of each compound was explained by genetic differences among the eight C. elegans strains. Taken together, these results provide robust evidence that heritable genetic variation explains differential susceptibility across an array of environmental pollutants and that genetically diverse C. elegans strains should be deployed to aid high-throughput toxicological screening efforts.


Subject(s)
Caenorhabditis elegans , Environmental Pollutants , Animals , Caenorhabditis elegans/genetics , Environmental Pollutants/toxicity , Genomics , Hazardous Substances , Mammals , Models, Biological
4.
G3 (Bethesda) ; 12(10)2022 09 30.
Article in English | MEDLINE | ID: mdl-35961034

ABSTRACT

Growth rate and body size are complex traits that contribute to the fitness of organisms. The identification of loci that underlie differences in these traits provides insights into the genetic contributions to development. Leveraging Caenorhabditis elegans as a tractable metazoan model for quantitative genetics, we can identify genomic regions that underlie differences in growth. We measured postembryonic growth of the laboratory-adapted wild-type strain (N2) and a wild strain from Hawaii (CB4856) and found differences in body size. Using linkage mapping, we identified three distinct quantitative trait loci (QTL) on chromosomes IV, V, and X that are associated with variation in body growth. We further examined these growth-associated quantitative trait loci using chromosome substitution strains and near-isogenic lines and validated the chromosome X quantitative trait loci. In addition, we generated a list of candidate genes for the chromosome X quantitative trait loci. These genes could potentially contribute to differences in animal growth and should be evaluated in subsequent studies. Our work reveals the genetic architecture underlying animal growth variation and highlights the genetic complexity of growth in Caenorhabditis elegans natural populations.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Chromosome Mapping , Phenotype , Quantitative Trait Loci
5.
Cells Dev ; 170: 203780, 2022 06.
Article in English | MEDLINE | ID: mdl-35452889

ABSTRACT

Growth control establishes organism size, requiring mechanisms to sense and adjust growth during development. Studies of single cells revealed that size homeostasis uses distinct control methods. In multicellular organisms, mechanisms that regulate single cell growth must integrate control across organs and tissues during development to generate adult size and shape. We leveraged the roundworm Caenorhabditis elegans as a scalable and tractable model to collect precise growth measurements of thousands of individuals, measure feeding behavior, and quantify changes in animal size and shape during a densely sampled developmental time course. As animals transitioned from one developmental stage to the next, we observed changes in body aspect ratio while body volume remained constant. Then, we modeled a physical mechanism by which constraints on cuticle stretch could cause changes in C. elegans body shape. The model-predicted shape changes are consistent with those observed in the data. Theoretically, cuticle stretch could be sensed by the animal to initiate larval-stage transitions, providing a means for physical constraints to influence developmental timing and growth rate in C. elegans.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Body Size , Caenorhabditis elegans Proteins/physiology , Larva , Somatotypes
6.
PLoS One ; 16(8): e0252000, 2021.
Article in English | MEDLINE | ID: mdl-34383778

ABSTRACT

High-throughput imaging techniques have become widespread in many fields of biology. These powerful platforms generate large quantities of data that can be difficult to process and visualize efficiently using existing tools. We developed easyXpress to process and review C. elegans high-throughput microscopy data in the R environment. The package provides a logical workflow for the reading, analysis, and visualization of data generated using CellProfiler's WormToolbox. We equipped easyXpress with powerful functions to customize the filtering of noise in data, specifically by identifying and removing objects that deviate from expected animal measurements. This flexibility in data filtering allows users to optimize their analysis pipeline to match their needs. In addition, easyXpress includes tools for generating detailed visualizations, allowing the user to interactively compare summary statistics across wells and plates with ease. Researchers studying C. elegans benefit from this streamlined and extensible package as it is complementary to CellProfiler and leverages the R environment to rapidly process and analyze large high-throughput imaging datasets.


Subject(s)
Databases, Factual , Image Processing, Computer-Assisted , Software , Animals , Caenorhabditis elegans/cytology , Caenorhabditis elegans/physiology , Microscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...