Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Am J Physiol Regul Integr Comp Physiol ; 326(6): R507-R514, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38586888

ABSTRACT

Diets varying in macronutrient composition, energy density, and/or palatability may cause differences in outcome of bariatric surgery. In the present study, rats feeding a healthy low-fat (LF) diet or an obesogenic high-fat/sucrose diet (HF/S) were either subjected to Roux-en-Y gastric bypass surgery (RYGB) or sham surgery, and weight loss trajectories and various energy balance parameters were assessed. Before RYGB, rats eating an HF/S (n = 14) diet increased body weight relative to rats eating an LF diet (n = 20; P < 0.01). After RYGB, absolute weight loss was larger in HF/S (n = 6) relative to LF feeding (n = 6) rats, and this was associated with reduced cumulative energy intake (EI; P < 0.05) and increased locomotor activity (LA; P < 0.05-0.001), finally leading to similar levels of reduced body fat content in HF/S and LF rats 3 wk after surgery. Regression analysis revealed that variation in RYGB-induced body weight loss was best explained by models including 1) postoperative cumulative EI and preoperative body weight (R2 = 0.87) and 2) postoperative cumulative EI and diet (R2 = 0.79), each without significant contribution of LA. Particularly rats on the LF diet became transiently more hypothermic and circadianally arrhythmic following RYGB (i.e., indicators of surgery-associated malaise) than HF/S feeding rats. Our data suggest that relative to feeding an LF diet, continued feeding an HF/S diet does not negatively impact recovery from RYGB surgery, yet it promotes RYGB-induced weight loss. The RYGB-induced weight loss is primarily explained by reduced cumulative EI and higher preoperative body weight, leading to comparably low levels of body fat content in HF/S and LF feeding rats.NEW & NOTEWORTHY Relative to feeding an LF diet, continued feeding an HF/S diet does not negatively impact recovery from RYGB surgery in rats. Relative to feeding an LF diet, continued feeding an HF/S diet promotes RYGB-induced weight loss. The RYGB-induced weight loss is primarily explained by reduced cumulative EI and higher preoperative body weight, leading to comparably low levels of body fat content in HF/S and LF feeding rats.


Subject(s)
Energy Intake , Gastric Bypass , Rats, Wistar , Weight Loss , Animals , Male , Rats , Energy Metabolism , Diet, High-Fat , Body Weight , Obesity/physiopathology , Obesity/surgery , Obesity/metabolism , Caloric Restriction
2.
Heliyon ; 10(4): e26608, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38404823

ABSTRACT

Whole body vibration (WBV) is a form of passive exercise that offers an alternative physical training to aged individuals with limitations in their physical and mental capabilities. The aim of the present study was to explore the therapeutic potential of five weeks of WBV on anxiety-like behaviors as well as learning and memory abilities in senescent thirty months old rats. Animals were exposed to 5 min vibration twice per day, five times per week during the five consecutive weeks. Pseudo WBV treated animals served as controls. After five weeks of WBV treatment, animals were tested for anxiety-like behavior by the open field test and for spatial and object memory functions by the novel and spatial object recognition tests, respectively. As a result, anxiety-like and exploratory behaviors were significantly improved in the WBV treated group compared to the pseudo WBV group. Furthermore, WBV treatment increased discrimination performance in both spatial and object memory function testing. These results indicate that WBV treatment in thirty months old rats seems to have comparable beneficial effects on age-related emotional and cognitive performance as what has been reported in younger age groups.

3.
Molecules ; 28(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37110805

ABSTRACT

Many plant-derived flavonoids are known for their anti-neuroinflammatory and anti-neurodegenerative effects. The fruits and leaves of the black currant (BC, Ribes nigrum) contain these phytochemicals with therapeutic benefits. The current study presents a report on a standardized BC gemmotherapy extract (BC-GTE) that is prepared from fresh buds. It provides details about the phytoconstituent profile specific to the extract as well as the associated antioxidant and anti-neuroinflammatory properties. The reported BC-GTE was found to contain approximately 133 phytonutrients, making it unique in its composition. Furthermore, this is the first report to quantify the presence of significant flavonoids such as luteolin, quercetin, apigenin, and kaempferol. Drosophila melanogaster-based tests revealed no cytotoxic but nutritive effects. We also demonstrated that adult male Wistar rats, pretreated with the analyzed BC-GTE and assessed after lipopolysaccharide (LPS) injection, did not show any apparent increase in body size in the microglial cells located in the hippocampal CA1 region, while in control experiments, the activation of microglia was evident. Moreover, no elevated levels of serum-specific TNF-α were observed under the LPS-induced neuroinflammatory condition. The analyzed BC-GTE's specific flavonoid content, along with the experimental data based on an LPS-induced inflammatory model, suggest that it possesses anti-neuroinflammatory/neuroprotective properties. This indicates that the studied BC-GTE has the potential to be used as a GTE-based complementary therapeutic approach.


Subject(s)
Neuroprotective Agents , Ribes , Rats , Animals , Flavonoids/pharmacology , Ribes/chemistry , Microglia , Neuroprotective Agents/pharmacology , Tumor Necrosis Factor-alpha , Pilot Projects , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Drosophila melanogaster , Lipopolysaccharides , Rats, Wistar , Ethanol , Hippocampus
4.
Behav Brain Funct ; 19(1): 5, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36941713

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is the core cause of dementia in elderly populations. One of the main hallmarks of AD is extracellular amyloid beta (Aß) accumulation (APP-pathology) associated with glial-mediated neuroinflammation. Whole-Body Vibration (WBV) is a passive form of exercise, but its effects on AD pathology are still unknown. METHODS: Five months old male J20 mice (n = 26) and their wild type (WT) littermates (n = 24) were used to investigate the effect of WBV on amyloid pathology and the healthy brain. Both J20 and WT mice underwent WBV on a vibration platform or pseudo vibration treatment. The vibration intervention consisted of 2 WBV sessions of 10 min per day, five days per week for five consecutive weeks. After five weeks of WBV, the balance beam test was used to assess motor performance. Brain tissue was collected to quantify Aß deposition and immunomarkers of astrocytes and microglia. RESULTS: J20 mice have a limited number of plaques at this relatively young age. Amyloid plaque load was not affected by WBV. Microglia activation based on IBA1-immunostaining was significantly increased in the J20 animals compared to the WT littermates, whereas CD68 expression was not significantly altered. WBV treatment was effective to ameliorate microglia activation based on morphology in both J20 and WT animals in the Dentate Gyrus, but not so in the other subregions. Furthermore, GFAP expression based on coverage was reduced in J20 pseudo-treated mice compared to the WT littermates and it was significantly reserved in the J20 WBV vs. pseudo-treated animals. Further, only for the WT animals a tendency of improved motor performance was observed in the WBV group compared to the pseudo vibration group. CONCLUSION: In accordance with the literature, we detected an early plaque load, reduced GFAP expression and increased microglia activity in J20 mice at the age of ~ 6 months. Our findings indicate that WBV has beneficial effects on the early progression of brain pathology. WBV restored, above all, the morphology of GFAP positive astrocytes to the WT level that could be considered the non-pathological and hence "healthy" level. Next experiments need to be performed to determine whether WBV is also affective in J20 mice of older age or other AD mouse models.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Mice , Male , Animals , Mice, Transgenic , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Vibration/therapeutic use , Alzheimer Disease/genetics , Alzheimer Disease/therapy , Alzheimer Disease/metabolism , Hippocampus/pathology , Disease Models, Animal
5.
J Cardiovasc Dev Dis ; 10(3)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36975886

ABSTRACT

BACKGROUND: Homocysteine (Hcy) is involved in various methylation processes, and its plasma level is increased in cardiac ischemia. Thus, we hypothesized that levels of homocysteine correlate with the morphological and functional remodeling of ischemic hearts. Thus, we aimed to measure the Hcy levels in the plasma and pericardial fluid (PF) and correlate them with morphological and functional changes in the ischemic hearts of humans. METHODS: Concentration of total homocysteine (tHcy) and cardiac troponin-I (cTn-I) of plasma and PF were measured in patients undergoing coronary artery bypass graft (CABG) surgery (n = 14). Left-ventricular (LV) end-diastolic diameter (LVED), LV end-systolic diameter (LVES), right atrial, left atrial (LA) area, thickness of interventricular septum (IVS) and posterior wall, LV ejection fraction (LVEF), and right ventricular outflow tract end-diastolic area (RVOT EDA) of CABG and non-cardiac patients (NCP; n = 10) were determined by echocardiography, and LV mass was calculated (cLVM). RESULTS: Positive correlations were found between Hcy levels of plasma and PF, tHcy levels and LVED, LVES and LA, and an inverse correlation was found between tHcy levels and LVEF. cLVM, IVS, and RVOT EDA were higher in CABG with elevated tHcy (>12 µM/L) compared to NCP. In addition, we found a higher cTn-I level in the PF compared to the plasma of CABG patients (0.08 ± 0.02 vs. 0.01 ± 0.003 ng/mL, p < 0.001), which was ~10 fold higher than the normal level. CONCLUSIONS: We propose that homocysteine is an important cardiac biomarker and may have an important role in the development of cardiac remodeling and dysfunction in chronic myocardial ischemia in humans.

6.
Front Aging Neurosci ; 15: 1034474, 2023.
Article in English | MEDLINE | ID: mdl-36960421

ABSTRACT

Background: Females with cardiovascular disease seem more vulnerable to develop concomitant mental problems, such as depression and cognitive decline. Although exercise is shown beneficial in cardiovascular disease as well as in mental functions, these patients may be incapable or unmotivated to perform exercise. Whole body vibration (WBV) could provide a passive alternative to exercise. Aim of the present study was to compare WBV to exercise after isoproterenol (ISO)-induced myocardial damage in female rats, regarding effects on heart, brain and behavior. Methods: One week after ISO (70 mg/kg s.c., on 2 consecutive days) or saline injections, 12 months old female rats were assigned to WBV (10 minutes daily), treadmill running (30 minutes daily) or pseudo intervention for 5 weeks. During the last 10 days, behavioral tests were performed regarding depressive-like behavior, cognitive function, and motor performance. Rats were sacrificed, brains and hearts were dissected for (immuno)histochemistry. Results: Significant ISO-induced cardiac collagen deposition (0.67 ± 0.10 vs 0.18 ± 0.03%) was absent after running (0.45 ± 0.26 vs 0.46 ± 0.08%), but not after WBV (0.83 ± 0.12 vs 0.41 ± 0.05%). However, WBV as well as running significantly reduced hippocampal (CA3) collagen content in ISO-treated rats. Significant regional differences in hippocampal microglia activity and brain derived neurotrophic factor (BDNF) expression were observed. Significant ISO-induced CA1 microglia activation was reduced after WBV as well as running, while opposite effects were observed in the CA3; significant reduction after ISO that was restored by WBV and running. Both WBV and running reversed the ISO-induced increased BDNF expression in the CA1, Dentate gyrus and Hilus, but not in the CA3 area. Whereas running had no significant effect on behavior in the ISO-treated rats, WBV may be associated with short-term spatial memory in the novel location recognition test. Conclusion: Although the female rats did not show the anticipated depressive-like behavior or cognitive decline after ISO, our data indicated regional effects on neuroinflammation and BDNF expression in the hippocampus, that were merely normalized by both WBV and exercise. Therefore, apart from the potential concern about the lack of cardiac collagen reduction, WBV may provide a relevant alternative for physical exercise.

7.
Brain Behav Immun Health ; 26: 100521, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36203743

ABSTRACT

Although exercise is usually associated with beneficial effects on physical and mental health, patients recovering from surgery may be hampered to perform active exercise. Whole body vibration (WBV) is suggested a passive alternative for physical training. Aim of the present study was to explore the therapeutic potential of WBV compared to physical exercise during early post-surgery recovery. Male three months old Wistar rats underwent major abdominal surgery. Starting the day after surgery, rats were subjected to either daily WBV or exercise (treadmill running) for 15 consecutive days. Control rats underwent pseudo treatment. During the first week after surgery, effects of interventions were obtained from continuous recording of hemodynamic parameters, body temperature and activity (via an implanted transducer). Behavioral tests were performed during the second post-surgical week to evaluate anxiety-like behavior, short and long-term memory functions, cognitive flexibility and motor performance. Animals were sacrificed 15 days after surgery and brain tissue was collected for analysis of hippocampal neuroinflammation and neurogenesis. Surgery significantly impacted all parameters measured during the first post-surgery week, irrespective of the type of surgery. Effect on cognitive performance was limited to cognitive flexibility; both WBV and exercise prevented the surgery-induced decline. Exercise, but not WBV increased anxiety-like behavior and grip strength. WBV as well as exercise prevented the surgery-induced declined neurogenesis, but surgery-associated hippocampal neuroinflammation was not affected. Our results indicated that active exercise and WBV share similar therapeutic potentials in the prevention of surgery induced decline in cognitive flexibility and hippocampal neurogenesis. In contrast to exercise, WBV did not increase anxiety-like behavior. Since neither intervention affected hippocampal neuroinflammation, other mechanisms and/or brain areas may be involved in the behavioral effects. Taken together, we conclude that WBV may provide a relevant alternative to active exercise during the early stage of post-operative recovery.

8.
Front Aging Neurosci ; 14: 854811, 2022.
Article in English | MEDLINE | ID: mdl-35936761

ABSTRACT

Acute cardiac damage can be induced by isoproterenol injections in animals. The associated inflammatory response could be reflected in the brain as neuroinflammation, with potential consequences for brain function and behavior. Although cardiac responses are reported age and sex-related, for neuroinflammation and brain function this is virtually unknown. Therefore, cardiac damage and its consequences for neuroinflammation, brain function and behavior were compared in aged male and female rats. Wistar rats of 24 months of age were treated with isoproterenol (ISO, twice s.c.) or saline. Four weeks after injections, exploratory behavior and short-term memory were tested. Then, rats were sacrificed. Hearts were collected to measure cardiac damage. Brain tissue was collected to obtain measures of neuroinflammation and brain function. In male-, but not in female rats, ISO induced significant cardiac damage. Accordingly, mortality was higher in males than in females. Baseline hippocampal microglia activity was lower in females, while ISO induced neuroinflammation in both sexes, Hippocampal brain-derived neurotrophic factor expression appeared lower in females, without effects of ISO. In the open field test, ISO-treated males, but not females, displayed anxiety-like behavior. No effects of ISO were observed on short-term memory in either sex. In conclusion, sex dimorphism in effects of ISO was observed for cardiac damage and open field behavior. However, these effects could not be related to differences in hippocampal neuroinflammation or neuronal function.

9.
Sci Rep ; 12(1): 10095, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35710575

ABSTRACT

Women with cardiovascular disease may be more susceptible to concomitant mental health problems, such as depression and cognitive decline. Exercise training has beneficial effects on the cardiovascular system as well as on mental functions. Aim of the present study was to study the effects of exercise training on heart, brain and behavior in the isoproterenol (ISO) model in middle-aged female rats. Twelve months old female Wistar rats were submitted to ISO injections (70 mg/kg s.c., on two consecutive days) or received saline. One week later, rats were assigned to either exercise training (treadmill running) or control handling for five weeks. During the last 7 days, tests were performed regarding depressive-like behavior and cognitive function. Then, rats were sacrificed and heart and brains were dissected for (immuno)histochemistry. ISO-induced cardiac effects were eminent from cardiac fibrosis and declined cardiac function. Exercise training reversed cardiac damage and partly restored ISO-induced cardiac dysfunction. However, ISO treatment could not be associated with neuroinflammation, nor impaired hippocampal neurogenesis or neuronal function. Accordingly, no cognitive impairment or depressive-like behavior were observed. Actually, hippocampal microglia hyper-ramification was observed after ISO. Exercise left neuroinflammation and behavior merely unaltered, and even reduced neuronal function. Our data indicated that the cardiac damage after ISO in middle-aged female rats, and the subsequent beneficial effects of five weeks exercise training on the heart, were not reflected in changes in the brain nor in altered behavior.


Subject(s)
Myocardial Infarction , Myocardium , Animals , Brain , Female , Humans , Isoproterenol/pharmacology , Rats , Rats, Wistar
10.
Sci Rep ; 12(1): 9020, 2022 05 30.
Article in English | MEDLINE | ID: mdl-35637277

ABSTRACT

Whole body vibration (WBV) is a form of passive exercise by the stimulation of mechanical vibration platform. WBV has been extensively investigated through clinical studies with main focus on the musculoskeletal system. However, pre-clinical data in the context of behavior, memory and motor functions with aged rodents are limited. The aim of this experiment was to investigate the dose dependent effects of a five weeks long WBV intervention with an aged animal model including anxiety-related behavior, memory and motor functions, as well as markers of (neuro)inflammation. Male Wistar rats (18 months) underwent 5 or 20 min daily vibration exposure or pseudo-treatment (i.e.: being subjected to the same environmental stimuli for 5 or 20 min, but without exposure to vibrations) 5 times per week. After 5 weeks treatment, cognitive functions, anxiety-like behavior and motor performance were evaluated. Finally, brain tissue was collected for immunohistological purposes to evaluate hippocampal (neuro)inflammation. Animals with 20 min daily session of WBV showed a decrease in their anxiety-like behavior and improvement in their spatial memory. Muscle strength in the grip hanging test was only significantly improved by 5 min daily WBV treatments, whereas motor coordination in the balance beam test was not significantly altered. Microglia activation showed a significant decrease in the CA1 and Dentate gyrus subregions by both dose of WBV. In contrast, these effects were less pronounced in the CA3 and Hilus subregions, where only 5 min dose showed a significant effect on microglia activation. Our results indicate, that WBV seems to be a comparable strategy on age-related anxiety, cognitive and motor decline, as well as alleviating age-related (neuro)inflammation.


Subject(s)
Neuroinflammatory Diseases , Vibration , Animals , Anxiety/therapy , Hippocampus , Male , Rats , Rats, Wistar , Vibration/therapeutic use
11.
Sci Rep ; 11(1): 23576, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34880374

ABSTRACT

Acute sympathetic stress can result in cardiac fibrosis, but may also lead to mental dysfunction. Exercise training after isoproterenol (ISO)-induced acute sympathetic stress was investigated regarding cardiac damage, neuroinflammation, brain function and behavior. Male Wistar rats (12 months) received ISO or saline. One week later, treadmill running or control handling (sedentary) started. After 4 weeks, cognitive- and exploratory behavior were evaluated, and heart and brain tissues were analyzed regarding cardiac damage, hippocampal neuroinflammation and neuronal function. ISO did not affect cognitive performance nor hippocampal function. However, ISO reduced anxiety, coinciding with locally reduced microglia (processes) size in the hippocampus. Exercise in ISO rats reversed anxiety, did not affect microglia morphology, but increased brain function. Thus, exercise after ISO did not affect cardiac damage, cognition or hippocampal neuroinflammation, but normalized anxiety. Increased localized BDNF expression may indicate improved brain function.


Subject(s)
Exploratory Behavior/physiology , Heart Diseases/chemically induced , Heart Diseases/physiopathology , Hippocampus/physiopathology , Isoproterenol/pharmacology , Physical Conditioning, Animal/physiology , Animals , Anxiety/metabolism , Anxiety/physiopathology , Brain-Derived Neurotrophic Factor/metabolism , Cognition/physiology , Heart/drug effects , Heart/physiopathology , Heart Diseases/metabolism , Hippocampus/metabolism , Male , Microglia/metabolism , Microglia/physiology , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/physiopathology , Neurons/metabolism , Neurons/physiology , Rats , Rats, Wistar
12.
Biology (Basel) ; 10(10)2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34681065

ABSTRACT

Whole-body vibration (WBV) is an exercise modality or treatment/prophylaxis method in which subjects (humans, animals, or cells) are exposed to mechanical vibrations through a vibrating platform or device. The vibrations are defined by their direction, frequency, magnitude, duration, and the number of daily bouts. Subjects can be exposed while performing exercises, hold postures, sitting, or lying down. Worldwide, WBV has attracted significant attention, and the number of studies is rising. To interpret, compare, and aggregate studies, the correct, complete, and consistent reporting of WBV-specific data (WBV parameters) is critical. Specific reporting guidelines aid in accomplishing this goal. There was a need to expand existing guidelines because of continuous developments in the field of WBV research, including but not limited to new outcome measures regarding brain function and cognition, modified designs of WBV platforms and attachments (e.g., mounting a chair on a platform), and comparisons of animal and cell culture studies with human studies. Based on Delphi studies among experts and using EQUATOR recommendations, we have developed extended reporting guidelines with checklists for human and animal/cell culture research, including information on devices, vibrations, administration, general protocol, and subjects. In addition, we provide explanations and examples of how to report. These new reporting guidelines are specific to WBV variables and do not target research designs in general. Researchers are encouraged to use the new WBV guidelines in addition to general design-specific guidelines.

13.
Front Aging Neurosci ; 13: 801828, 2021.
Article in English | MEDLINE | ID: mdl-35126091

ABSTRACT

Aging is a progressive process leading to functional decline in many domains. Recent studies have shown that physical exercise (PE) has a positive influence on the progression of age-related functional decline, including motor and brain functions. Whole body vibration (WBV) is a form of passive stimulation by mechanical vibration platforms, which offers an alternative for PE interventions, especially for aged individuals. WBV has been demonstrated to mimic the beneficial effects of PE on the musculoskeletal system, as well on the central nervous system. However, preclinical data with aged rodents are very limited. Hence, the purpose of this experiment was to investigate the effects of a 5-week WBV intervention with an aged animal model on memory functions, anxiety-related behavior, and motor performance. The 18-month old male (N = 14) and female (N = 14) Wistar rats were divided into two groups, namely, vibration and pseudo-vibration. Animals underwent a 5-week WBV intervention protocol with low intensity (frequency of 30 Hz and amplitude of 50-200 µm) stimulation. After 5 weeks, the following cognitive and motor tests were administered: open-field, novel and spatial object recognition, grip-hanging, and balance-beam. WBV-treated rats showed a decrease in their anxiety level in the open field test compared with those in the pseudo-treated controls. In addition, WBV-treated male animals showed significantly increased rearing in the open-field test compared to their pseudo controls. Spatial memory was significantly improved by WBV treatment, whereas WBV had no effect on object memory. Regarding motor performance, both grip strength and motor coordination were improved by WBV treatment. Our results indicate that WBV seems to have comparable beneficial effects on age-related emotional, cognitive, and motor decline as what has been reported for active PE. No striking differences were found between the sexes. As such, these findings further support the idea that WBV could be considered as a useful alternative for PE in case active PE cannot be performed due to physical or mental issues.

14.
PLoS One ; 15(7): e0235905, 2020.
Article in English | MEDLINE | ID: mdl-32697809

ABSTRACT

BACKGROUND: Whole-body vibration (WBV) is a method utilizing vibrating platforms to expose individuals to mechanical vibration. In its various applications, it has been linked to improved muscular, skeletal, metabolic, or cognitive functioning, quality of life, and physiological parameters such as blood pressure. Most evidence concerning WBV is inconclusive and meta-analytical reviews may not readily produce insights since the research has a risk of misunderstandings of vibration parameters and incomplete reporting occurs. This study aims at laying an empirical foundation for reporting guidelines for human WBV studies to improve the quality of reporting and the currently limited comparability between studies. METHOD: The Delphi methodology is employed to exploit the integrated knowledge of WBV experts to distil the specific aspects of WBV methodology that should be included in such guidelines. Over three rounds of completing online questionnaires, the expert panel (round 1/2/3: 51/40/37 experts respectively from 17 countries with an average of 19.4 years of WBV research experience) rated candidate items. RESULTS: A 40-item list was established based on the ratings of the individual items from the expert panel with a large final consensus (94.6%). CONCLUSION: The final consensus indicates comprehensiveness and valuableness of the list. The results are in line with previous guidelines but expand these extensively. The present results may therefore serve as a foundation for updated guidelines for reporting human WBV studies in order to improve the quality of reporting of WBV studies, improve comparability of studies and facilitate the development of WBV study designs.


Subject(s)
Physical Therapy Modalities , Vibration/therapeutic use , Adult , Aged , Delphi Technique , Expert Testimony , Female , Human Body , Humans , Male , Middle Aged , Research , Surveys and Questionnaires
15.
F1000Res ; 92020.
Article in English | MEDLINE | ID: mdl-32595943

ABSTRACT

Vibrations are all around us. We can detect vibrations with sensitive skin mechanoreceptors, but our conscious awareness of the presence of vibrations is often limited. Nevertheless, vibrations play a role in our everyday life. Here, we briefly describe the function of vibration detection and how it can be used for medical applications by way of whole body vibration. Strong vibrations can be harmful, but milder vibrations can be beneficial, although to what extent and how large the clinical relevance is are still controversial. Whole body vibration can be applied via a vibrating platform, used in both animal and human research. Recent findings make clear that the mode of action is twofold: next to the rather well-known exercise (muscle) component, it also has a sensory (skin) component. Notably, the sensory (skin) component stimulating the brain has potential for several purposes including improvements in brain-related disorders. Combining these two components by selecting the optimal settings in whole body vibration has clear potential for medical applications. To realize this, the field needs more standardized and personalized protocols. It should tackle what could be considered the "Big Five" variables of whole body vibration designs: vibration amplitude, vibration frequency, method of application, session duration/frequency, and total intervention duration. Unraveling the underlying mechanisms by translational research can help to determine the optimal settings. Many systematic reviews on whole body vibration end with the conclusion that the findings are promising yet inconclusive. This is mainly because of the large variation in the "Big Five" settings between studies and incomplete reporting of methodological details hindering reproducibility. We are of the opinion that when (part of) these optimal settings are being realized, a much better estimate can be given about the true potential of whole body vibration as a medical application.


Subject(s)
Vibration , Animals , Brain , Exercise , Humans , Mechanoreceptors , Reproducibility of Results
16.
Obes Surg ; 30(7): 2729-2742, 2020 07.
Article in English | MEDLINE | ID: mdl-32342267

ABSTRACT

PURPOSE: Ileal transposition (IT) allows exploration of hindgut effects of bariatric procedures in inducing weight loss and reducing adiposity. Here we investigated the role of dietary macronutrient content on IT effects in rats. METHODS: Male Lewis rats consuming one of three isocaloric liquid diets enriched with fat (HF), carbohydrates (HC), or protein (HP) underwent IT or sham surgery. Body weight, energy intake, energy efficiency, body composition, and (meal-induced) changes in plasma GIP, GLP-1, PYY, neurotensin, and insulin levels were measured. RESULTS: Following IT, HC intake remained highest leading to smallest weight loss among dietary groups. IT in HF rats caused high initial weight loss and profound hypophagia, but the rats caught up later, and finally had the highest body fat content among IT rats. HP diet most efficaciously supported IT-induced reduction in body weight and adiposity, but (as opposed to other diet groups) lean mass was also reduced. Energy efficiency decreased immediately after IT irrespective of diet, but normalized later. Energy intake alone explained variation in post-operative weight change by 80%. GLP-1, neurotensin, and PYY were upregulated by IT, particularly during (0-60 min) and following 17-h post-ingestive intake, with marginal diet effects. Thirty-day post-operative cumulative energy intake was negatively correlated to 17-h post-ingestive PYY levels, explaining 47% of its variation. CONCLUSION: Reduction in energy intake underlies IT-induced weight loss, with highest efficacy of the HP diet. PYY, GLP-1, and neurotensin levels are upregulated by IT, of which PYY may be most specifically related to reduced intake and weight loss after IT.


Subject(s)
Diet, High-Protein , Obesity, Morbid , Adipose Tissue , Animals , Body Weight , Dietary Fats , Energy Intake , Male , Obesity, Morbid/surgery , Rats , Rats, Inbred Lew
17.
Neuroscience ; 411: 65-75, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31146009

ABSTRACT

Physical exercise is now generally considered as a strategy to maintain cognitive abilities and to prevent age-related cognitive decline. In the present study, Wistar rats were subjected to moderate intensity treadmill exercise for 6 months prior to sacrifice at 12-, 24- and 32-month of age. This chronic physical intervention was tested on motility in the Open field (OF). Cognitive functions were measured in the Morris water maze (MWM) for spatial learning and in the Novel object recognition (NOR) tests. Since learning and memory are closely associated with cholinergic forebrain function ChAT fiber density after exercise training was assessed in hippocampus, and motor- and somatosensory cortical areas. Furthermore, quantification of ChAT-positive fiber aberrations as a neuropathological marker was also carried out in these brain areas. Our results show that in OF chronic exercise maintained horizontal locomotor activity in all age groups. Rearing activity, MWM and notably NOR performance were improved only in the 32-months old animals. Regarding cholinergic neuronal innervation, apart from a general age-related decline, exercise increased ChAT fiber density in the hippocampus CA1 area and in the motor cortex notably in the 32-months group. Massive ChAT fiber aberrations in all investigated areas which developed in senescence were clearly attenuated by exercise. The results suggest that moderate intensity chronic exercise in the rat is especially beneficial in advanced age. In conclusion, chronic exercise attenuates the age-related decline in cognitive and motor behaviors as well as age-related cholinergic fiber reduction, reduces malformations of cholinergic forebrain innervation.


Subject(s)
Aging/physiology , Cholinergic Neurons/physiology , Cognition/physiology , Physical Conditioning, Animal/physiology , Prosencephalon/metabolism , Animals , Choline O-Acetyltransferase/metabolism , Hippocampus/metabolism , Male , Maze Learning/physiology , Rats , Rats, Wistar
18.
Int J Occup Med Environ Health ; 32(1): 99-114, 2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30855101

ABSTRACT

Objectives: The main aim of this study was to examine the health behavior patterns of soldiers in the Hungarian Defense Forces and to introduce health behavior profiles according to the cluster analysis of lifestyle factors. Material and Methods: The soldiers (N = 5475) who underwent health tests in 2011­2015 participated in this cross-sectional study. The factors included in the analysis are the following: age, sex, diseases diagnosed, the body mass index, eating habits, the smoking status, daily physical activity, sporting habits, the presence of psychosomatic symptoms, mental toughness and sleep apnea. The response options for each factor were scored on a linear scale; the minimum number of points available was ­47.5 pts and the maximum number was 48.5 pts according to the 24 factors. Finally, the authors created health profiles typical of the pattern with the cluster analysis of the data. Results: As a result of the cluster analysis, 16 distinct profiles were found, 10 of which differed significantly (p < 0.05) from each other. The lowest point value achieved was 3.1 pts and the highest was 26.2 pts. The lowest number of points was achieved by the cluster, 1.8% of the sample, with the highest average age (43.5±7.2 years) in which women showed the highest participation (46%). The 2 clusters with the highest numbers of points, 2.9% and 5.5% of the sample, were the 2 groups with the lowest average age (33.7±7.1 years and 34.3±7.9 years). Conclusions: The significance of the health profiles obtained during this examination with the Hungarian Defense Forces is that the health promotion intervention opportunities may be determined by clusters, the health behavior factor with which the authors can reach higher health benefits can be chosen and the effectiveness of the interventions carried out can be traced easily. Int J Occup Med Environ Health. 2019;32(1):99­114


Subject(s)
Health Behavior , Health Status , Life Style , Military Personnel/statistics & numerical data , Adult , Aged , Cluster Analysis , Cross-Sectional Studies , Female , Humans , Hungary , Male , Mental Health , Middle Aged , Occupational Health , Surveys and Questionnaires
19.
Behav Brain Res ; 349: 163-168, 2018 09 03.
Article in English | MEDLINE | ID: mdl-29702177

ABSTRACT

During advanced aging passive exercise (PE) is becoming a valuable therapeutic intervention to improve physical and mental performances. In the present study chronic low frequency pulsed electromagnetic field (EMF) exposure was presented to senescent rats in order to clarify the behavioural effects related to cognitive and motility functions. Male Wistar rats of 30-32 months old were treated with EMF for six weeks, 3 times per week, 24 min per sessions prior to the age of 32 months. Stimulation intensities varied from 45 to 1250 µT. Psychomotility was estimated in an open field (OF), attention ability in novel object recognition (NOR), and spatial learning in the Morris water maze (MWM) tests. The results showed that EMF stimulation enhanced novelty-induced motility of vertical type, i.e. frequency of rearing activity was increased. In the cognitive tests EMF exposure increased attention-based discrimination in NOR and facilitated working memory type of spatial learning in the MWM tests. No undesirable type of side effects could be obtained even after the highest dose used. It is concluded that EMF stimulation in senescent age supports cognitive and psychomotor function in rats. The notion that PE may have complementary beneficial action on brain and motor functions in senescent age is strengthened by the present experimental results.


Subject(s)
Aging , Cognition , Electromagnetic Fields , Psychomotor Performance , Animals , Attention , Discrimination, Psychological , Magnetic Field Therapy , Male , Maze Learning , Memory, Short-Term , Random Allocation , Rats, Wistar , Recognition, Psychology
20.
Afr J Tradit Complement Altern Med ; 14(4): 128-134, 2017.
Article in English | MEDLINE | ID: mdl-28638875

ABSTRACT

BACKGROUND: Whole body vibration (WBV) is a form of physical stimulation via mechanical vibrations transmitted to a subject. It is assumed that WBV induces sensory stimulation in cortical brain regions through the activation of skin and muscle receptors responding to the vibration. The effects of WBV on muscle strength are well described. However, little is known about the impact of WBV on the brain. Recently, it was shown in humans that WBV improves attention in an acute WBV protocol. Preclinical research is needed to unravel the underlying brain mechanism. As a first step, we examined whether chronic WBV improves attention in mice. MATERIAL AND METHODS: A custom made vibrating platform for mice with low intensity vibrations was used. Male CD1 mice (3 months of age) received five weeks WBV (30 Hz; 1.9 G), five days a week with sessions of five (n=12) or 30 (n=10) minutes. Control mice (pseudo-WBV; n=12 and 10 for the five and 30 minute sessions, respectively) were treated in a similar way, but did not receive the actual vibration. Object recognition tasks were used as an attention test (novel and spatial object recognition - the primary outcome measure). A Balance beam was used for motor performance, serving as a secondary outcome measure. RESULTS: WBV sessions of five (but not WBV sessions of 30 minutes) improved balance beam performance (mice gained 28% in time needed to cross the beam) and novel object recognition (mice paid significantly more attention to the novel object) as compared to pseudo WBV, but no change was found for spatial object performance (mice did not notice the relocation). Although 30 minutes WBV sessions were not beneficial, it did not impair either attention or motor performance. CONCLUSION: These results show that brief sessions of WBV improve, next to motor performance, attention for object recognition, but not spatial cues of the objects. The selective improvement of attention in mice opens the avenue to unravel the underlying brain mechanisms.


Subject(s)
Attention , Physical Therapy Modalities , Animals , Brain/physiology , Male , Mice , Motor Activity , Muscle Strength , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...