Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(1)2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38202313

ABSTRACT

Around 300 different plant species are infected by the plant-parasitic reniform nematode (Rotylenchulus reniformis), including cotton. This is a devasting nematode with a preference for cotton; it is commonly found in Alabama farms and causes severe reduction in yields. Its first internal transcribed spacer (ITS1) region can be sequenced, and potential mutations can be found in order to study the population dynamics of the reniform nematode. The goal of our study was to sequence the ITS1 rDNA region in male and female RNs that were collected from BelleMina, Hamilton, and Lamons locations in Alabama. After separating the single male and female RNs from the samples collected from the three selected listed sites above, the ITS1 region was amplified selectively using specific primers, and the resulting products were cloned and sequenced. Two distinct bands were observed after DNA amplification of male and female nematodes at 550 bp and 730 bp, respectively. The analysis of sequenced fragments among the three populations showed variation in average nucleotide frequencies of female and male RNs. Singletons within the female and male Hamilton populations ranged from 7.8% to 10%, and the variable sites ranged from 13.4% to 26%. However, female and male BelleMina populations had singletons ranging from 7.1% to 19.7% and variable regions in the range of 13.9% to 49.3%. The female and male Lamons populations had singletons ranging from 2.5% to 8.7% and variable regions in the range of 2.9% to 14.2%. Phylogenetic (neighbor-joining) analysis for the two ITS1 fragments (ITS-550 and ITS-730) showed relatively high intra-nematode variability. Different clone sequences from an individual nematode often had greater similarity with other nematodes than with their own sequences. RNA fold analysis of the ITS1 sequences revealed varied stem and loop structures, suggesting both conserved and variable regions in the variants identified from female and male RNs, thus underscoring the presence of significant intra- and inter-nematodal variation among RN populations in Alabama.

2.
Plant Pathol J ; 32(2): 123-35, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27147932

ABSTRACT

U.S. cotton production is suffering from the yield loss caused by the reniform nematode (RN), Rotylenchulus reniformis. Management of this devastating pest is of utmost importance because, no upland cotton cultivar exhibits adequate resistance to RN. Nine populations of RN from distinct regions in Alabama and one population from Mississippi were studied and thirteen morphometric features were measured on 20 male and 20 female nematodes from each population. Highly correlated variables (positive) in female and male RN morphometric parameters were observed for body length (L) and distance of vulva from the lip region (V) (r = 0.7) and tail length (TL) and c' (r = 0.8), respectively. The first and second principal components for the female and male populations showed distinct clustering into three groups. These results show pattern of sub-groups within the RN populations in Alabama. A one-way ANOVA on female and male RN populations showed significant differences (p ≤ 0.05) among the variables. Multiple sequence alignment (MSA) of 18S rRNA sequences (421) showed lengths of 653 bp. Sites within the aligned sequences were conserved (53%), parsimony-informative (17%), singletons (28%), and indels (2%), respectively. Neighbor-Joining analysis showed intra and inter-nematodal variations within the populations as clone sequences from different nematodes irrespective of the sex of nematode isolate clustered together. Morphologically, the three groups (I, II and III) could not be distinctly associated with the molecular data from the 18S rRNA sequences. The three groups may be identified as being non-geographically contiguous.

3.
Genome ; 57(4): 209-21, 2014 Apr.
Article in English | MEDLINE | ID: mdl-25036535

ABSTRACT

The reniform nematode (RN), a major agricultural pest particularly on cotton in the United States, is among the major plant-parasitic nematodes for which limited genomic information exists. In this study, over 380 Mb of sequence data were generated from pooled DNA of four adult female RNs and assembled into 67,317 contigs, including 25,904 (38.5%) predicted coding contigs and 41,413 (61.5%) noncoding contigs. Most of the characterized repeats were of low complexity (88.9%), and 0.9% of the contigs matched with 53.2% of GenBank ESTs. The most frequent Gene Ontology (GO) terms for molecular function and biological process were protein binding (32%) and embryonic development (20%). Further analysis showed that 741 (1.1%), 94 (0.1%), and 169 (0.25%) RN genomic contigs matched with 1328 (13.9%), 1480 (5.4%), and 1330 (7.4%) supercontigs of Meloidogyne incognita, Brugia malayi, and Pristionchus pacificus, respectively. Chromosome 5 of Caenorhabditis elegans had the highest number of hits to the RN contigs. Seven putative detoxification genes and three carbohydrate-active enzymes (CAZymes) involved in cell wall degradation were studied in more detail. Additionally, kinases, G protein-coupled receptors, and neuropeptides functioning in physiological, developmental, and regulatory processes were identified in the RN genome.


Subject(s)
Genome, Helminth , Genomics , Nematoda/genetics , Animals , Computational Biology/methods , Databases, Genetic , Female , Gene Expression Profiling , Gene Ontology , Gossypium/parasitology , Molecular Sequence Annotation , Nematoda/classification , Sequence Analysis, DNA , Transcriptome
4.
PLoS One ; 8(4): e60891, 2013.
Article in English | MEDLINE | ID: mdl-23593343

ABSTRACT

The 18S rRNA gene is fundamental to cellular and organismal protein synthesis and because of its stable persistence through generations it is also used in phylogenetic analysis among taxa. Sequence variation in this gene within a single species is rare, but it has been observed in few metazoan organisms. More frequently it has mostly been reported in the non-transcribed spacer region. Here, we have identified two sequence variants within the near full coding region of 18S rRNA gene from a single reniform nematode (RN) Rotylenchulus reniformis labeled as reniform nematode variant 1 (RN_VAR1) and variant 2 (RN_VAR2). All sequences from three of the four isolates had both RN variants in their sequences; however, isolate 13B had only RN variant 2 sequence. Specific variable base sites (96 or 5.5%) were found within the 18S rRNA gene that can clearly distinguish the two 18S rDNA variants of RN, in 11 (25.0%) and 33 (75.0%) of the 44 RN clones, for RN_VAR1 and RN_VAR2, respectively. Neighbor-joining trees show that the RN_VAR1 is very similar to the previously existing R. reniformis sequence in GenBank, while the RN_VAR2 sequence is more divergent. This is the first report of the identification of two major variants of the 18S rRNA gene in the same single RN, and documents the specific base variation between the two variants, and hypothesizes on simultaneous co-existence of these two variants for this gene.


Subject(s)
Genetic Variation , Phylogeny , RNA, Ribosomal, 18S/genetics , Tylenchida/genetics , Animals , Base Sequence , Cluster Analysis , DNA Primers/genetics , Molecular Sequence Data , Sequence Alignment , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...