Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
PLoS Med ; 19(5): e1003994, 2022 05.
Article in English | MEDLINE | ID: mdl-35550620

ABSTRACT

BACKGROUND: Neurological complications due to chikungunya virus (CHIKV) infection have been described in different parts of the world, with children being disproportionately affected. However, the burden of CHIKV-associated neurological disease in Africa is currently unknown and given the lack of diagnostic facilities in routine care it is possible that CHIKV is an unrecognized etiology among children with encephalitis or other neurological illness. METHODS AND FINDINGS: We estimated the incidence of CHIKV infection among children hospitalized with neurological disease in Kilifi County, coastal Kenya. We used reverse transcriptase polymerase chain reaction (RT-PCR) to systematically test for CHIKV in cerebrospinal fluid (CSF) samples from children aged <16 years hospitalized with symptoms of neurological disease at Kilifi County Hospital between January 2014 and December 2018. Clinical records were linked to the Kilifi Health and Demographic Surveillance System and population incidence rates of CHIKV infection estimated. There were 18,341 pediatric admissions for any reason during the 5-year study period, of which 4,332 (24%) had CSF collected. The most common clinical reasons for CSF collection were impaired consciousness, seizures, and coma (47%, 22%, and 21% of all collections, respectively). After acute investigations done for immediate clinical care, CSF samples were available for 3,980 admissions, of which 367 (9.2%) were CHIKV RT-PCR positive. Case fatality among CHIKV-positive children was 1.4% (95% CI 0.4, 3.2). The annual incidence of CHIKV-associated neurological disease varied between 13 to 58 episodes per 100,000 person-years among all children <16 years old. Among children aged <5 years, the incidence of CHIKV-associated neurological disease was 77 per 100,000 person-years, compared with 20 per 100,000 for cerebral malaria and 7 per 100,000 for bacterial meningitis during the study period. Because of incomplete case ascertainment due to children not presenting to hospital, or not having CSF collected, these are likely minimum estimates. Study limitations include reliance on hospital-based surveillance and limited CSF sampling in children in coma or other contraindications to lumbar puncture, both of which lead to under-ascertainment of incidence and of case fatality. CONCLUSIONS: In this study, we observed that CHIKV infections are relatively more common than cerebral malaria and bacterial meningitis among children hospitalized with neurological disease in coastal Kenya. Given the wide distribution of CHIKV mosquito vectors, studies to determine the geographic extent of CHIKV-associated neurological disease in Africa are essential.


Subject(s)
Chikungunya Fever , Chikungunya virus , Malaria, Cerebral , Meningitis, Bacterial , Nervous System Diseases , Adolescent , Animals , Chikungunya Fever/diagnosis , Chikungunya Fever/epidemiology , Chikungunya virus/genetics , Child , Cohort Studies , Coma , Humans , Incidence , Kenya/epidemiology , Nervous System Diseases/epidemiology
2.
PLOS Glob Public Health ; 2(12): e0000914, 2022.
Article in English | MEDLINE | ID: mdl-36962807

ABSTRACT

Chikungunya fever (CHIKF) is an arboviral illness that was first described in Tanzania (1952). In adults, the disease is characterised by debilitating arthralgia and arthritis that can persist for months, with severe illness including neurological complications observed in the elderly. However, the burden, distribution and clinical features of CHIKF in children are poorly described. We conducted a systematic literature review and meta-analysis to determine the epidemiology of CHIKF in children globally by describing its prevalence, geographical distribution, and clinical manifestations. We searched electronic databases for studies describing the epidemiology of CHIKF in children. We included peer-reviewed primary studies that reported laboratory confirmed CHIKF. We extracted information on study details, sampling approach, study participants, CHIKF positivity, clinical presentation and outcomes of CHIKF in children. The quality of included studies was assessed using Joanna Briggs Institute Critical Appraisal tool for case reports and National Institute of Health quality assessment tool for quantitative studies and case series. Random-effects meta-analysis was used to estimate the pooled prevalence of CHIKF among children by geographical location. We summarised clinical manifestations, laboratory findings, administered treatment and disease outcomes associated with CHIKF in children. We identified 2104 studies, of which 142 and 53 articles that met the inclusion criteria were included in the systematic literature review and meta-analysis, respectively. Most of the selected studies were from Asia (54/142 studies) and the fewest from Europe (5/142 studies). Included studies were commonly conducted during an epidemic season (41.5%) than non-epidemic season (5.1%). Thrombocytopenia was common among infected children and CHIKF severity was more prevalent in children <1 year. Children with undifferentiated fever before CHIKF was diagnosed were treated with antibiotics and/or drugs that managed specific symptoms or provided supportive care. CHIKF is a significant under-recognised and underreported health problem among children globally and development of drugs/vaccines should target young children.

3.
BMC Infect Dis ; 21(1): 186, 2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33602147

ABSTRACT

BACKGROUND: Chikungunya fever (CHIKF) was first described in Tanzania in 1952. Several epidemics including East Africa have occurred, but there are no descriptions of longitudinal surveillance of endemic disease. Here, we estimate the incidence of CHIKF in coastal Kenya and describe the associated viral phylogeny. METHODS: We monitored acute febrile illnesses among 3500 children visiting two primary healthcare facilities in coastal Kenya over a 5-year period (2014-2018). Episodes were linked to a demographic surveillance system and blood samples obtained. Cross-sectional sampling in a community survey of a different group of 435 asymptomatic children in the same study location was done in 2016. Reverse-transcriptase PCR was used for chikungunya virus (CHIKV) screening, and viral genomes sequenced for phylogenetic analyses. RESULTS: We found CHIKF to be endemic in this setting, associated with 12.7% (95% CI 11.60, 13.80) of all febrile presentations to primary healthcare. The prevalence of CHIKV infections among asymptomatic children in the community survey was 0.7% (95% CI 0.22, 2.12). CHIKF incidence among children < 1 year of age was 1190 cases/100,000-person years and 63 cases/100,000-person years among children aged ≥10 years. Recurrent CHIKF episodes, associated with fever and viraemia, were observed among 19 of 170 children with multiple febrile episodes during the study period. All sequenced viral genomes mapped to the ECSA genotype albeit distinct from CHIKV strains associated with the 2004 East African epidemic. CONCLUSIONS: CHIKF may be a substantial public health burden in primary healthcare on the East African coast outside epidemic years, and recurrent infections are common.


Subject(s)
Chikungunya Fever/epidemiology , Chikungunya Fever/virology , Adolescent , Chikungunya Fever/diagnosis , Chikungunya virus/classification , Chikungunya virus/genetics , Chikungunya virus/isolation & purification , Child , Child, Preschool , Cross-Sectional Studies , Female , Fever/diagnosis , Fever/epidemiology , Fever/virology , Genotype , Humans , Incidence , Infant , Kenya/epidemiology , Male , Phylogeny , Prevalence , Prospective Studies , Recurrence
4.
J Med Entomol ; 58(1): 428-438, 2021 01 12.
Article in English | MEDLINE | ID: mdl-32623459

ABSTRACT

The purpose of this study was to determine the ecology of the common arboviral mosquito vectors in Mombasa, Kilifi and Malindi urban areas of coastal Kenya. Mosquito larvae were collected using standard dippers and pipettes. Egg survivorship in dry soil was evaluated by collecting soil samples from dry potential larval developmental sites, re-hydrating them for hatching and rearing of the eventual larvae to adults. Adult mosquitoes were collected with CDC light traps and BG-Sentinel traps. All blood-fed females were tested for bloodmeal origin. Mosquitoes were screened for arboviruses using RT-qPCR. Overall, the predominant species were Culex quinquefasciatus (Say) 72.4% (n = 2,364) and Aedes aegypti (L.), 25.7%, (n = 838). A total of 415 larval developmental sites were identified indoors (n = 317) and outdoors (n = 98). The most productive larval developmental sites, both indoors and outdoors, were assorted small containers, water tanks, drainages, drums, and jerricans. Overall, 62% (n = 18) of the soil samples collected were positive for larvae which were used as a proxy to measure the presence of eggs. The mosquitoes fed on humans (29.8%) and chickens (3.7%). Of 259 mosquitoes tested for viral infection, 11.6% were positive for Flavivirus only. The most productive larval developmental sites for arboviral vectors indoors were small containers, water tanks, jerricans, and drums whereas small containers, water tanks, drainage channels, buckets, tires, and water troughs were the productive larval developmental sites outdoors.


Subject(s)
Arboviruses/physiology , Culicidae/physiology , Mosquito Vectors/physiology , Animal Distribution , Animals , Cities , Culicidae/growth & development , Kenya , Larva/growth & development , Larva/physiology , Longevity , Mosquito Vectors/growth & development , Ovum/growth & development , Ovum/physiology , Pupa/growth & development , Pupa/physiology
5.
PLoS Negl Trop Dis ; 13(10): e0007506, 2019 10.
Article in English | MEDLINE | ID: mdl-31622339

ABSTRACT

BACKGROUND: Brucella spp. is a zoonotic bacterial agent of high public health and socio-economic importance. It infects many species of animals including wildlife, and people may get exposed through direct contact with an infected animal or consumption of raw or undercooked animal products. A linked livestock-human cross-sectional study to determine seroprevalences and risk factors of brucellosis in livestock and humans was designed. Estimates were made for intra-cluster correlation coefficients (ICCs) for these observations at the household and village levels. METHODOLOGY: The study was implemented in Garissa (specifically Ijara and Sangailu areas) and Tana River (Bura and Hola) counties. A household was the unit of analysis and the sample size was derived using the standard procedures. Serum samples were obtained from selected livestock and people from randomly selected households. Humans were sampled in both counties, while livestock could be sampled only in Tana River County. Samples obtained were screened for anti-Brucella IgG antibodies using ELISA kits. Data were analyzed using generalized linear mixed effects logistic regression models with the household (herd) and village being used as random effects. RESULTS: The overall Brucella spp. seroprevalences were 3.47% (95% confidence interval [CI]: 2.72-4.36%) and 35.81% (95% CI: 32.87-38.84) in livestock and humans, respectively. In livestock, older animals and those sampled in Hola had significantly higher seroprevalences than younger ones or those sampled in Bura. Herd and village random effects were significant and ICC estimates associated with these variables were 0.40 (95% CI: 0.22-0.60) and 0.24 (95% CI: 0.08-0.52), respectively. In humans, Brucella spp. seroprevalence was significantly higher in older people, males, and people who lived in pastoral areas than younger ones, females or those who lived in irrigated or riverine areas. People from households that had at least one seropositive animal were 3.35 (95% CI: 1.51-7.41) times more likely to be seropositive compared to those that did not. Human exposures significantly clustered at the household level; the ICC estimate obtained was 0.21 (95% CI: 0.06-0.52). CONCLUSION: The presence of a Brucella spp.-seropositive animal in a household significantly increased the odds of Brucella spp. seropositivity in humans in that household. Exposure to Brucella spp. of both livestock and humans clustered significantly at the household level. This suggests that risk-based surveillance measures, guided by locations of primary cases reported, either in humans or livestock, can be used to detect Brucella spp. infections in livestock or humans, respectively.


Subject(s)
Brucellosis/epidemiology , Brucellosis/immunology , Brucellosis/veterinary , Livestock/microbiology , Seroepidemiologic Studies , Adolescent , Adult , Animals , Antibodies, Bacterial/blood , Brucella , Brucellosis/microbiology , Cross-Sectional Studies , Female , Humans , Immunoglobulin G/blood , Kenya/epidemiology , Logistic Models , Male , Risk Factors , Rivers , Surveys and Questionnaires , Young Adult , Zoonoses/epidemiology , Zoonoses/microbiology
6.
Wellcome Open Res ; 4: 179, 2019.
Article in English | MEDLINE | ID: mdl-32175480

ABSTRACT

Background: Zika virus (ZIKV) was first discovered in East Africa in 1947.  ZIKV has caused microcephaly in the Americas, but it is not known whether ZIKV is a cause of microcephaly in East Africa. Methods: We used surveillance data from 11,061 live births at Kilifi County Hospital in coastal Kenya between January 2012 and October 2016 to identify microcephaly cases and conducted a nested case-control study to determine risk factors for microcephaly. Gestational age at birth was estimated based on antenatal ultrasound scanning ('Scanned cohort') or last menstrual period ('LMP cohort', including births ≥37 weeks' gestation only). Controls were newborns with head circumference Z scores between >-2 and ≤2 SD that were compared to microcephaly cases in relation to ZIKV exposure and other maternal and newborn factors. Results: Of the 11,061 newborns, 214 (1.9%, 95%CI 1.69, 2.21) had microcephaly. Microcephaly prevalence was 1.0% (95%CI 0.64, 1.70, n=1529) and 2.1% (95%CI 1.81, 2.38, n=9532) in the scanned and LMP cohorts, respectively. After excluding babies <2500 g (n=1199) in the LMP cohort the prevalence was 1.1% (95%CI 0.93, 1.39). Microcephaly showed an association with being born small for gestational age (p<0.001) but not with ZIKV neutralising antibodies (p=0.6) or anti-ZIKV NS1 IgM response (p=0.9). No samples had a ZIKV neutralising antibody titre that was at least fourfold higher than the corresponding dengue virus (DENV) titre. No ZIKV or other flavivirus RNA was detected in cord blood from cases or controls. Conclusions: Microcephaly was prevalent in coastal Kenya, but does not appear to be related to ZIKV exposure; the ZIKV response observed in our study population was largely due to cross-reactive responses to DENV or other related flaviviruses. Further research into potential causes and the clinical consequences of microcephaly in this population is urgently needed.

7.
BMC Infect Dis ; 16(1): 696, 2016 11 23.
Article in English | MEDLINE | ID: mdl-27881079

ABSTRACT

BACKGROUND: West Nile fever virus is a zoonotic arboviral infection maintained in a sylvatic cycle involving mosquito vectors and birds. It is one the arboviruses whose geographical range is expanding because of climate and land use changes that enhance the densities of mosquitoes and promote mosquito-bird-human interactions. We carried out a survey to determine the reservoirs of WNV among wild birds in Tana River and Garissa counties, Kenya. METHODS: Blood samples were obtained from 361 randomly trapped wild birds. Using real-time polymerase chain reaction (PCR), all samples were screened for WNV using gene specific primer sets amplifying a portion of the E region of the genome encoding the envelope protein. RESULTS: Sixty five (65) out of 361 birds screened tested positive for WNV on real-time PCR assay. Sequencing of the selected positive samples reveals that the isolated WNV were most closely related to strains isolated from China (2011). A regression analysis indicated that sampling location influenced the occurrence of WNV while species, age, weight and sex of the birds did not have any effect. CONCLUSIONS: This study provides baseline information on the existing circulation of WNV in this region among wild bird reservoirs that could spill over to the human population and points to the need for implementation of surveillance programs to map the distribution of the virus among reservoirs. Awareness creation about West Nile fever in this region is important to improve its detection and management.


Subject(s)
Animals, Wild/virology , Birds/virology , Disease Reservoirs/virology , West Nile virus/isolation & purification , Animals , DNA, Viral/analysis , Kenya , Real-Time Polymerase Chain Reaction , West Nile virus/classification , West Nile virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...