Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 326(Pt A): 116699, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36395644

ABSTRACT

Biogas production from anaerobic digestion (AD) of biowastes is restricted by the recalcitrant nature of many substrates, and this may also reduce the fertiliser value of the produced digestate. The degradability of substrates can potentially be enhanced by physico-chemical pre-treatments before AD, and/or the degradation can be increased by a longer digestion time. In this study, we evaluated the effects of electrokinetic (high voltage) and ultrasonication pre-treatments of biowastes in a two-step AD process on nitrogen fertiliser replacement value (NFRV) of digestates obtained from two biogas plants with contrasting hydraulic retention time (HRT) in the primary AD step. The fertiliser value was tested by direct injection to spring barley and surface-banding to winter wheat, and the ammonium N was 15N-labelled to evaluate ammonia losses. The electrokinetic pre-treatment step significantly (p < 0.05) increased the NH4+-N/total N in the digestates before the second AD step but had an insignificant effect on the fertiliser value in winter wheat and spring barley. Ultrasonication pre-treatment had also no significant effect on the fertiliser value. The two-step AD significantly (p < 0.001) increased 15N recoveries and mineral fertiliser equivalence of labelled ammonium-N in winter wheat and reduced ammonia losses, with a significant effect (p < 0.001) observed in digestates sourced from a shorter HRT biogas reactor. The fertiliser equivalence of labelled ammonium-N in the digestates was 80-88% after injection, indicating relatively low N immobilisation with all the digestates. NFRV in the crops was mainly explained by the NH4+-N/total N ratio, C/N ratio and dry matter content of the digestates. The findings suggest that electrokinetic and ultrasonication pre-treatments combined with a second AD step have no considerable impact on the fertiliser value of digestates, whereas a second AD step significantly reduced ammonia losses after application by surface-banding in winter wheat.


Subject(s)
Ammonium Compounds , Hordeum , Fertilizers , Edible Grain , Nitrogen , Ammonia , Biofuels , Anaerobiosis , Crops, Agricultural , Triticum
2.
Sci Total Environ ; 851(Pt 1): 158177, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-35988625

ABSTRACT

Anaerobic digestion (AD) is an important tool for reducing greenhouse gas emissions from agricultural production. A prolonged retention time by adding an extra anaerobic digestion step can be utilized to further degrade the digestates, contributing to increased nitrogen mineralisation and reducing decomposable organic matter. These modifications could influence the potential N fertiliser value of the digestate and soil carbon sequestration after field application. This study investigated the effects of prolonging retention time by implementing an additional anaerobic digestion step on carbon and nitrogen dynamics in the soil and soil carbon sequestration. Two digestates obtained from two biogas plants operating at contrasting hydraulic retention times, with and without an additional digestion step, were applied to a loamy sand soil. N mineralisation dynamics were measured during 80 days and C mineralisation during 212 days. After 80 days of incubation, the net inorganic N release from digestates obtained from a secondary AD step increased by 9-17 % (% of the N input) compared to corresponding digestates obtained from a primary AD step. A kinetic four-pool carbon model was used to fit C mineralisation data to estimate carbon sequestration in the soil. After 212 days of incubation, the net C mineralisation was highest in undigested solid biomass (68 %) and digestates obtained from the primary AD step (59-65 %). The model predicted that 26-54 % of C applied is sequestered in the soil in the long-term. The long-term soil C retention related to the C present before digestion was similar for one- and two-step AD at 12-16 %. We conclude that optimizing the anaerobic digestion configurations by including a secondary AD step could potentially replace more mineral N fertiliser due to an improved N fertiliser value of the resultant digestate without affecting carbon sequestration negatively.


Subject(s)
Greenhouse Gases , Soil , Anaerobiosis , Biofuels , Carbon , Carbon Sequestration , Fertilizers/analysis , Nitrogen/analysis , Sand
SELECTION OF CITATIONS
SEARCH DETAIL
...