Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Parasit Dis ; 46(2): 466-475, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35692470

ABSTRACT

Development of cerebral malaria (CM) is driven by parasitemia levels, harmful inflammatory response, oxidative stress and consequent breach of the blood brain barrier. Use of adjunct therapy that utilizes an antioxidant and anti-inflammatory agent alongside chloroquine (CQ), may improve treatment outcome and shorten recovery from post-infection sequelae. Though withdrawn in some countries, CQ is still in use for prophylaxis and treatment of malaria in many countries. Current study investigated whether oral co-administration of 50 mg/kg CQ and 200 mg/kg of coenzyme Q10 (CoQ10) would improve treatment outcome against experimental cerebral malaria (ECM) and assuage the deleterious effects of oxidative stress and inflammation upon infection by Plasmodium berghei ANKA (PbA) in a C57BL/6 J mouse model. Treatment with CQ + CoQ10 resulted in an improved parasite elimination; clearing the parasite one day early, when compared to mice on CQ alone. Remarkably, treatment with CQ and CoQ10 separately or in combination, assuaged PbA induced elevation of serum levels of TNF-α and IFN-γ an indication of protection from ECM progression. Furthermore, CQ and CoQ10-administration, blocked parasite-driven elevation of aspartate transaminase (AST), alanine transaminase (ALT) and bilirubin. In the presence of CQ and CoQ10, severe PbA-induced systemic induction of oxidative stress and resultant GSH depletion was reduced in the brain, liver, spleen, and kidney. Overall, these findings demonstrate that administration of CQ and CoQ10 ameliorates harmful parasite-driven oxidative stress and inflammation, while slowing the progression to full blown ECM and may improve treatment outcome in CM.

2.
BMC Pharmacol Toxicol ; 22(1): 19, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33827703

ABSTRACT

BACKGROUND: Arsenic poisoning affects millions of people. The inorganic forms of arsenic are more toxic. Treatment for arsenic poisoning relies on chelation of extracellularly circulating arsenic molecules by 2,3-dimecaptosuccinic acid (DMSA). As a pharmacological intervention, DMSA is unable to chelate arsenic molecules from intracellular spaces. The consequence is continued toxicity and cell damage in the presence of DMSA. A two-pronged approach that removes extracellular arsenic, while protecting from the intracellular arsenic would provide a better pharmacotherapeutic outcome. In this study, Coenzyme Q10 (CoQ10), which has been shown to protect from intracellular organic arsenic, was administered separately or with DMSA; following oral exposure to sodium meta-arsenite (NaAsO2) - a very toxic trivalent form of inorganic arsenic. The aim was to determine if CoQ10 alone or when co-administered with DMSA would nullify arsenite-induced toxicity in mice. METHODS: Group one represented the control; the second group was treated with NaAsO2 (15 mg/kg) daily for 30 days, the third, fourth and fifth groups of mice were given NaAsO2 and treated with 200 mg/kg CoQ10 (30 days) and 50 mg/kg DMSA (5 days) either alone or in combination. RESULTS: Administration of CoQ10 and DMSA resulted in protection from arsenic-induced suppression of RBCs, haematocrit and hemoglobin levels. CoQ10 and DMSA protected from arsenic-induced alteration of WBCs, basophils, neutrophils, monocytes, eosinophils and platelets. Arsenite-induced dyslipidemia was nullified by administration of CoQ10 alone or in combination with DMSA. Arsenite induced a drastic depletion of the liver and brain GSH; that was significantly blocked by CoQ10 and DMSA alone or in combination. Exposure to arsenite resulted in significant elevation of liver and kidney damage markers. The histological analysis of respective organs confirmed arsenic-induced organ damage, which was ameliorated by CoQ10 alone or when co-administered with DMSA. When administered alone, DMSA did not prevent arsenic-driven tissue damage. CONCLUSIONS: Findings from this study demonstrate that CoQ10 and DMSA separately or in a combination, significantly protect against arsenic-driven toxicity in mice. It is evident that with further pre-clinical and clinical studies, an adjunct therapy that incorporates CoQ10 alongside DMSA may find applications in nullifying arsenic-driven toxicity.


Subject(s)
Antidotes/therapeutic use , Arsenic Poisoning/drug therapy , Arsenites/toxicity , Chelating Agents/therapeutic use , Protective Agents/therapeutic use , Sodium Compounds/toxicity , Succimer/therapeutic use , Ubiquinone/analogs & derivatives , Animals , Arsenic Poisoning/blood , Arsenic Poisoning/metabolism , Arsenic Poisoning/pathology , Blood Cells/drug effects , Brain/drug effects , Brain/metabolism , Brain/pathology , Drug Therapy, Combination , Glutathione/metabolism , Hematocrit , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Mice , Ubiquinone/therapeutic use
3.
Parasitol Int ; 71: 106-120, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30981893

ABSTRACT

In animal model of experimental cerebral malaria (ECM), the genesis of neuropathology is associated with oxidative stress and inflammatory mediators. There is limited progress in the development of new approaches to the treatment of cerebral malaria. Here, we tested whether oral supplementation of Coenzyme Q10 (CoQ10) would offer protection against oxidative stress and brain associated inflammation following Plasmodium berghei ANKA (PbA) infection in C57BL/6 J mouse model. For this purpose, one group of C57BL/6 mice was used as control; second group of mice were orally supplemented with 200 mg/kg CoQ10 and then infected with PbA and the third group was PbA infected alone. Clinical, biochemical, immunoblot and immunological features of ECM was monitored. We observed that oral administration of CoQ10 for 1 month and after PbA infection was able to improve survival, significantly reduced oedema, TNF-α and MIP-1ß gene expression in brain samples in PbA infected mice. The result also shows the ability of CoQ10 to reduce cholesterol and triglycerides lipids, levels of matrix metalloproteinases-9, angiopoietin-2 and angiopoietin-1 in the brain. In addition, CoQ10 was very effective in decreasing NF-κB phosphorylation. Furthermore, CoQ10 supplementation abrogated Malondialdehyde, and 8-OHDG and restored cellular glutathione. These results constitute the first demonstration that oral supplementation of CoQ10 can protect mice against PbA induced oxidative stress and neuro-inflammation usually observed in ECM. Thus, the need to study CoQ10 as a candidate of antioxidant and immunomodulatory molecule in ECM and testing it in clinical studies either alone or in combination with antimalaria regimens to provide insight into a potential translatable therapy.


Subject(s)
Brain/immunology , Immunologic Factors/administration & dosage , Inflammation/prevention & control , Malaria, Cerebral/prevention & control , Oxidative Stress/drug effects , Ubiquinone/analogs & derivatives , Administration, Oral , Animals , Brain/pathology , Chemokine CCL4/genetics , Disease Models, Animal , Female , Glutathione/metabolism , Inflammation/pathology , Malaria, Cerebral/immunology , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Phosphorylation , Plasmodium berghei , Tumor Necrosis Factor-alpha/genetics , Ubiquinone/administration & dosage
4.
Parasitol Int ; 63(2): 417-26, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24440762

ABSTRACT

Human African trypanosomiasis (HAT) is a tropical disease caused by two subspecies of Trypanosoma brucei, the East African variant T. b. rhodesiense and the West African variant T. b. gambiense. Melarsoprol, an organic arsenical, is the only drug used to treat late stage T. b. rhodesiense infection. Unfortunately, this drug induces an extremely severe post treatment reactive encephalopathy (PTRE) in up to 10% of treated patients, half of whom die from this complication. A highly reproducible mouse model was adapted to assess the use of Kenyan purple tea anthocyanins and/or coenzyme-Q10 in blocking the occurrence of PTRE. Female Swiss white mice were inoculated intraperitoneally with approximately 10(4) trypanosome isolate T. b. rhodesiense KETRI 2537 and treated sub-curatively 21days post infection with 5mg/kg diminazene aceturate (DA) daily for 3days to induce severe late CNS infection that closely mirrors PTRE in human subjects. Thereafter mice were monitored for relapse of parasitemia after which they were treated with melarsoprol at a dosage of 3.6mg/kg body weight for 4days and sacrificed 24h post the last dosage to obtain brain samples. Brain sections from mice with PTRE that did not receive any antioxidant treatment showed a more marked presence of inflammatory cells, microglial activation and disruption of the brain parenchyma when compared to PTRE mice supplemented with either coenzyme-Q10, purple tea anthocyanins or a combination of the two. The mice group that was treated with coenzyme-Q10 or purple tea anthocyanins had higher levels of GSH and aconitase-1 in the brain compared to untreated groups, implying a boost in brain antioxidant capacity. Overall, coenzyme-Q10 treatment produced more beneficial effects compared to anthocyanin treatment. These findings demonstrate that therapeutic intervention with coenzyme-Q10 and/or purple tea anthocyanins can be used in an experimental mouse model to ameliorate PTRE associated with cerebral HAT.


Subject(s)
Anthocyanins/pharmacology , Central Nervous System Diseases/drug therapy , Central Nervous System Diseases/etiology , Trypanosomiasis, African/complications , Trypanosomiasis, African/drug therapy , Ubiquinone/analogs & derivatives , Animals , Body Weight , Diminazene/analogs & derivatives , Diminazene/therapeutic use , Female , Hematocrit , Humans , Mice , Trypanocidal Agents/therapeutic use , Trypanosoma brucei rhodesiense , Trypanosomiasis, African/pathology , Ubiquinone/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...