Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Ethnopharmacol ; 312: 116501, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37100261

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Herbal traditional medicine is used by millions of people in Africa for treatment of ailments such as diabetes mellitus, stomach disorders and respiratory diseases. Xeroderris stuhlmannii (Taub.) Mendonca & E.P. Sousa (X. stuhlmannii (Taub.)) is a medicinal plant used traditionally in Zimbabwe to treat type 2 diabetes mellitus (T2DM) and its complications. However, there is no scientific evidence to support its inhibitory effect against digestive enzymes (α-glucosidases) that are linked to high blood sugar in humans. AIM OF THE STUDY: This work aims to investigate whether bioactive phytochemicals of crude X. stuhlmannii (Taub.) can scavenge free radicals and inhibit α-glucosidases in order to reduce blood sugar in humans. MATERIALS AND METHODS: Here we examined the free radical scavenging potential of crude aqueous, ethyl acetate and methanolic extracts of X. stuhlmannii (Taub.) using the diphenyl-2-picrylhydrazyl assay in vitro. Furthermore, we carried out in vitro inhibition of α-glucosidases (α-amylase and α-glucosidase) by the crude extracts using chromogenic 3,5-dinitrosalicylic acid and p-nitrophenyl-α-D-glucopyranoside substrates. We also used molecular docking approaches (Autodock Vina) to screen for bioactive phytochemical compounds targeting the digestive enzymes. RESULTS: Our results showed that phytochemicals in X. stuhlmannii (Taub.) aqueous, ethyl acetate and methanolic extracts scavenged free radicals with IC50 values ranging from 0.002 to 0.013 µg/mL. Furthermore, crude aqueous, ethyl acetate and methanolic extracts significantly inhibited α-amylase and α-glucosidase with IC50 values of 10.5-29.5 µg/mL (versus 54.1 ± 0.7 µg/mL for acarbose) and 8.8-49.5 µg/mL (versus 161.4 ± 1.8 µg/mL for acarbose), respectively. In silico molecular docking findings and pharmacokinetic predictions showed that myricetin is likely a novel plant-derived α-glucosidase inhibitor. CONCLUSION: Collectively, our findings suggest pharmacological targeting of digestive enzymes by X. stuhlmannii (Taub.) crude extracts may reduce blood sugar in humans with T2DM via inhibition of α-glucosidases.


Subject(s)
Diabetes Mellitus, Type 2 , Plants, Medicinal , Humans , alpha-Glucosidases/chemistry , Molecular Docking Simulation , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Blood Glucose , Acarbose , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Plants, Medicinal/chemistry , Methanol , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , alpha-Amylases/chemistry , Antioxidants/pharmacology
2.
Front Mol Biosci ; 8: 643849, 2021.
Article in English | MEDLINE | ID: mdl-34651013

ABSTRACT

The emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb) impedes the End TB Strategy by the World Health Organization aiming for zero deaths, disease, and suffering at the hands of tuberculosis (TB). Mutations within anti-TB drug targets play a major role in conferring drug resistance within Mtb; hence, computational methods and tools are being used to understand the mechanisms by which they facilitate drug resistance. In this article, computational techniques such as molecular docking and molecular dynamics are applied to explore point mutations and their roles in affecting binding affinities for anti-TB drugs, often times lowering the protein's affinity for the drug. Advances and adoption of computational techniques, chemoinformatics, and bioinformatics in molecular biosciences and resources supporting machine learning techniques are in abundance, and this has seen a spike in its use to predict mutations in Mtb. This article highlights the importance of molecular modeling in deducing how point mutations in proteins confer resistance through destabilizing binding sites of drugs and effectively inhibiting the drug action.

SELECTION OF CITATIONS
SEARCH DETAIL
...