Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Chemosphere ; 150: 723-730, 2016 May.
Article in English | MEDLINE | ID: mdl-26746418

ABSTRACT

Anti-influenza drugs constitute a key component of pandemic preparedness plans against influenza. However, the occurrence of such drugs in water environments, the potential of resistance development in the natural hosts, and the risk for transmission of antiviral resistance to humans call for measures to increase removal in wastewater treatment plants (WWTPs). In this study, removal of three anti-influenza drugs; amantadine (AM), oseltamivir carboxylate (OC) and zanamivir (ZA), and formation/removal of their transformation products during ozonation of wastewater effluents from two Swedish WWTPs in Uppsala and Stockholm were studied. The removal profile of target antivirals and formation/removal of their transformation products were studied by liquid chromatography/high resolution mass spectrometry. 3.5 h of ozone exposure (total dose of ozone 5.95 g) led to complete removal of the three anti-influenza drugs with a degradation in the following order ZA > OC > AM. Two, five and one transformation products were identified and semi-quantified for AM, OC and ZA, respectively. Increasing and later decreasing transformation products concentration followed the decrease in concentration of target compounds. All transformation products detected, except one of AM in wastewater from Stockholm WWTP, were removed at the end of the experiment. The removal efficiency was higher for all studied compounds in wastewater from Uppsala WWTP, which had lower TOC and COD values, less phosphorus, and also higher pH in the water. Ozonation thus offers multiple benefits through its potential to degrade influenza antivirals, hence decrease the risk of environmental resistance development, in addition to degrading other pharmaceuticals and resistant microorganisms.


Subject(s)
Antiviral Agents/chemistry , Ozone/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Humans , Influenza, Human/drug therapy , Kinetics , Mass Spectrometry , Waste Disposal, Fluid/methods
2.
Dalton Trans ; 42(4): 927-34, 2013 Jan 28.
Article in English | MEDLINE | ID: mdl-23060073

ABSTRACT

The formation of an active 16-electron ruthenium sec-alkoxide complex via loss of the CO ligand is an important step in the mechanism of the racemization of sec-alcohols by (η(5)-Ph(5)C(5))Ru(CO)(2)X ruthenium complexes with X = Cl and O(t)Bu. Here we show with accurate DFT calculations the potential energy profile of the CO dissociation pathway for a series of relevant (η(5)-Ph(5)C(5))Ru(CO)(2)X complexes, where X = Cl, O(t)Bu, H and COO(t)Bu. We have found that the CO dissociation energy increases in the following order: O(t)Bu (lowest), Cl, COO(t)Bu and H (highest). Using the distance between ruthenium and C(CO), r = Ru-C(CO), as a constraint, and by optimizing all other degrees of freedom for a range of Ru-CO distances, we obtained relative energies, ΔE(r) and geometries of a sufficient number of transient structures with the elongated Ru-CO bond up to r = 3.4 Å. Our calculations provide a quantitative understanding of the CO ligand dissociation in (η(5)-Ph(5)C(5))Ru(CO)(2)Cl and (η(5)-Ph(5)C(5))Ru(CO)(2)(O(t)Bu) complexes, which is relevant to the mechanism of their catalytic activity in the racemization of alcohols. We recently reported that exchange of the CO ligand by isotopically labeled (13)CO in the Ru-O(t)Bu complex occurs twenty times faster than that in the Ru-Cl complex. This corresponds to a difference of 1.8 kcal mol(-1) in the CO dissociation energy (at room temperature). This is in very good agreement with the calculated difference between the two potential energy curves for Ru-O(t)Bu and Ru-Cl complexes, which is about 1.8-2 kcal mol(-1) around the corresponding transition states of the CO dissociation. The calculated difference in the total energy for CO dissociation in (η(5)-Ph(5)C(5))Ru(CO)(2)X complexes is related to the stabilization provided by the X group in the final 16-electron complexes, which are formed via product-like transition states. In addition to the calculated transition states of CO dissociation in Ru-O(t)Bu and Ru-Cl complexes, the calculated transient structures with the elongated Ru-CO bond provide insight into how the geometry of the ruthenium complex with a potent heteroatom donor group (X) gradually changes when one of the COs is dissociating.


Subject(s)
Alcohols/chemistry , Carbon Monoxide/chemistry , Coordination Complexes/chemistry , Ruthenium/chemistry , Catalysis , Models, Chemical , Molecular Conformation , Thermodynamics
3.
Proc Natl Acad Sci U S A ; 109(1): 78-83, 2012 Jan 03.
Article in English | MEDLINE | ID: mdl-22178758

ABSTRACT

A highly combinatorial structure-based protein engineering method for obtaining enantioselectivity is reported that results in a thorough modification of the substrate binding pocket of Candida antarctica lipase A (CALA). Nine amino acid residues surrounding the entire pocket were simultaneously mutated, contributing to a reshaping of the substrate pocket to give increased enantioselectivity and activity for a sterically demanding substrate. This approach seems to be powerful for developing enantioselectivity when a complete reshaping of the active site is required. Screening toward ibuprofen ester 1, a substrate for which previously used methods had failed, gave variants with a significantly increased enantioselectivity and activity. Wild-type CALA has a moderate activity with an E value of only 3.4 toward this substrate. The best variant had an E value of 100 and it also displayed a high activity. The variation at each mutated position was highly reduced, comprising only the wild type and an alternative residue, preferably a smaller one with similar properties. These minimal binary variations allow for an extremely condensed protein library. With this highly combinatorial method synergistic effects are accounted for and the protein fitness landscape is explored efficiently.


Subject(s)
Candida/enzymology , Lipase/chemistry , Peptide Library , Amino Acid Substitution , Catalytic Domain , Esters/chemistry , Homologous Recombination/genetics , Ibuprofen/analysis , Ibuprofen/chemistry , Lipase/metabolism , Models, Molecular , Mutagenesis/genetics , Mutant Proteins/chemistry , Mutation/genetics , Protein Conformation , Stereoisomerism , Substrate Specificity
5.
J Am Chem Soc ; 132(20): 7038-42, 2010 May 26.
Article in English | MEDLINE | ID: mdl-20450151

ABSTRACT

A variant of Candida antarctica lipase A (CalA) was developed for the hydrolysis of alpha-substituted p-nitrophenyl esters by directed evolution. The E values of this variant for 7 different esters was 45-276, which is a large improvement compared to 2-20 for the wild type. The broad substrate scope of this enzyme variant is of synthetic use, and hydrolysis of the tested substrates proceeded with an enantiomeric excess between 95-99%. A 30-fold increase in activity was also observed for most substrates. The developed enzyme variant shows (R)-selectivity, which is reversed compared to the wild type that is (S)-selective for most substrates.


Subject(s)
Directed Molecular Evolution/methods , Esters/chemistry , Esters/metabolism , Lipase/genetics , Lipase/metabolism , Candida/enzymology , Catalytic Domain , Hydrolysis , Kinetics , Lipase/chemistry , Models, Molecular , Phenylpropionates/chemistry , Phenylpropionates/metabolism , Stereoisomerism , Substrate Specificity
7.
Protein Eng Des Sel ; 22(7): 413-20, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19509064

ABSTRACT

We herein report the first directed evolution of Candida antarctica lipase A (CalA), employing a combinatorial active-site saturation test (CAST). Wild-type CalA has a modest E-value of 5.1 in kinetic resolution of 4-nitrophenyl 2-methylheptanoate. Enzyme variants were expressed in Pichia pastoris by using the episomal vector pBGP1 which allowed efficient secretory expression of the lipase. Iterative rounds of CASTing yielded variants with good selectivity toward both the (S)- and the (R)-enantiomer. The best obtained enzyme variants had E-values of 52 (S) and 27 (R).


Subject(s)
Candida/enzymology , Lipase/genetics , Pichia/genetics , Amino Acid Sequence , Catalytic Domain , Combinatorial Chemistry Techniques , Directed Molecular Evolution , Molecular Sequence Data , Peptide Library , Plasmids
8.
J Am Chem Soc ; 131(27): 9500-1, 2009 Jul 15.
Article in English | MEDLINE | ID: mdl-19534552

ABSTRACT

An acyl intermediate in the activation of eta(5)-(Ph(5)Cp)Ru(CO)(2)Cl by t-BuOK was identified by means of in situ FT-IR measurements and NMR spectroscopy. This strongly supports the conclusion that the ligand exchange takes place via CO assistance, i.e., that the activation occurs via nucleophilic attack by tert-butoxide on one of the CO ligands. The tert-butoxycarbonyl intermediate shows stretching vibrations at 1933 and 1596 cm(-1), corresponding to the CO and COOt-Bu groups, respectively. In the (13)C NMR spectrum, the CO group appears at 209.5 ppm and the COOt-Bu group at 208.7 ppm. The NMR assignments were confirmed by density functional theory calculations. The subsequent alcohol-alkoxide exchange is also thought to take place via CO assistance. However, no intermediate in that step could be detected.

9.
Chemistry ; 15(21): 5220-9, 2009.
Article in English | MEDLINE | ID: mdl-19396888

ABSTRACT

Two possible pathways of inner-sphere racemization of sec-alcohols by using the [RuCl(CO)(2)(eta(5)-pentaphenylcyclopentadienyl)] catalyst (1) have been thoroughly investigated by means of density function calculations. To be able to racemize alcohols, catalyst 1 needs to have a free coordination site on the metal. This can be achieved either by a eta(5)-->eta(3) ring slippage or by dissociation of a carbon monoxide (CO) ligand. The eta(5)-->eta(3) ring-slip pathway was found to have a high potential energy barrier, 42 kcal mol(-1), which can be explained by steric congestion in the transition state. On the other hand, CO dissociation to give a 16-electron complex has a barrier of only 22.6 kcal mol(-1). We have computationally discovered a mechanism involving CO participation that does not require eta(5)-->eta(3) ring slippage. The key features of this mechanism are 1) CO-assisted exchange of chloride for alkoxide, 2) alcohol-alkoxide exchange, and 3) generation of an active 16-electron complex through CO dissociation with subsequent beta-hydride elimination as the racemization step. We have found a low-energy pathway for reaction of 1 with potassium tert-butoxide and a pathway for fast alkoxide exchange with interaction between the incoming/leaving alcohol and one of the two CO ligands. We predict that dissociation of a Ru-bound CO ligand does not occur in these exchange reactions. Dissociation of one of the two Ru-bound CO ligands has been found necessary only at a later stage of the reaction. Though this barrier is still quite high, our results indicate that it is not necessary to cross the CO dissociation barrier for the racemization of each new alcohol. Thus, the dissociation of a CO ligand is interpreted as a rate-limiting reaction step in order to create a catalytically active 16-electron complex.

10.
Dalton Trans ; (29): 5780-6, 2009 Aug 07.
Article in English | MEDLINE | ID: mdl-20449093

ABSTRACT

The study thoroughly examines the Gibbs free energy surfaces of a new mechanism for reduction of ketones/aldehydes by tris(pentafluorophenyl)borane (1) and H(2). Key elements of the proposed mechanism are the proton and the hydride transfer steps similar to Stephan's catalytic reduction of imines by 1. The proton is transferred to the ketone/aldehyde in the process of H(2) cleavage by the carbonyl-borane couple and the hydride is transferred in a nucleophilic attack on the carbonyl carbon by the hydridoborate in the ionic pair, [HOCRR'](+)[HB(C(6)F(5))(3)](-). The in solvent Gibbs free energy barriers of H(2) splitting by adducts of B(C(6)F(5))(3) with acetone, acetophenone and benzaldehyde are predicted to be in the range of 24.5 +/- 2.5 kcal mol(-1), which corresponds to potential energy barriers in the range of 17.0 +/- 2.0 kcal mol(-1). Significantly lower barrier of H(2) activation is predicted in cases of bulky ketones such as 2,2,4,4-tetramethylpentan-3-one. With respect to the hydridoborate intermediate, the nucleophilic attack on the activated carbon is predicted to have a relatively low barrier for the sterically unhindered substrates, while this barrier is considerably higher for the sterically encumbered substrates. Since the formation of the hydridoborate intermediates is found to be endothermic, the transition state of the nucleophilic attack is the highest point of the computed energy profile for all tested substrates. Overall, according to in solvent density function calculations the proposed reduction of "compact" ketones/aldehydes by 1 and H(2) is allowed both thermodynamically and kinetically at elevated temperature, but it is expected to be slower and more substrate specific than the corresponding reduction of imines.


Subject(s)
Aldehydes/chemistry , Boranes/chemistry , Computer Simulation , Hydrocarbons, Fluorinated/chemistry , Hydrogen/chemistry , Ketones/chemistry , Thermodynamics , Catalysis , Oxidation-Reduction
11.
Bioorg Med Chem ; 16(21): 9471-86, 2008 Nov 01.
Article in English | MEDLINE | ID: mdl-18842420

ABSTRACT

Several BACE-1 inhibitors with low nanomolar level activities, encompassing a statine-based core structure with phenyloxymethyl- and benzyloxymethyl residues in the P1 position, are presented. The novel P1 modification introduced to allow the facile exploration of the S1 binding pocket of BACE-1, delivered highly promising inhibitors.


Subject(s)
Amino Acids/chemistry , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Drug Design , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacology , Crystallography, X-Ray , Humans , Models, Molecular , Peptide Fragments/chemical synthesis , Peptide Fragments/chemistry , Peptide Fragments/pharmacology , Protease Inhibitors/chemistry , Structure-Activity Relationship
12.
Chembiochem ; 9(12): 1968-74, 2008 Aug 11.
Article in English | MEDLINE | ID: mdl-18655082

ABSTRACT

The selectivity of acetylation of delta-functionalized secondary alcohols catalyzed by Candida antarctica lipase B has been examined by molecular dynamics. The results from the simulation show that a delta-alcohol functionality forms a hydrogen bond with the carbonyl group of Thr 40. This interaction stabilizes the tetrahedral intermediate and thus leads to selective acetylation of the R enantiomer. A stabilizing interaction of the delta-(R)-acetoxy group with the peptide NH of alanine 282 was also observed. No stabilizing interaction could be found for the delta-keto functionality, and it is proposed that this is the reason for the experimentally observed decrease in enantioselectivity. From these results, it was hypothesized that the enantioselectivity could be restored by mutating the alanine in position 281 for serine. The mutation was made experimentally, and the results show that the E value increased from 9 to 120.


Subject(s)
Alcohols/chemistry , Alcohols/metabolism , Lipase/metabolism , Acetates/metabolism , Catalysis , Esterification , Fungal Proteins , Lipase/chemistry , Models, Molecular , Protein Conformation , Stereoisomerism , Substrate Specificity
13.
Chirality ; 20(1): 47-50, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17966123

ABSTRACT

A synthetic procedure for the preparation of 4-cyclohexyl-2-methyl-buta-2,3-dienoic acid in the two optically active forms has been developed. Synthesis of the racemic allenoic acid was made by an efficient route with good overall yield. Resolution of the enantiomers was achieved by forming the cinchonidine and cinchonine diastereomeric salt, respectively, and the enantiomers were isolated in up to 95% enantiomeric excess. The absolute configuration of the allenoic acid was determined by X-ray crystallography.


Subject(s)
Acids/chemical synthesis , Alkaloids/chemistry , Optics and Photonics , Salts/metabolism , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/chemical synthesis , Alkaloids/metabolism , Cinchona Alkaloids/chemistry , Crystallography, X-Ray , Phosphoranes/chemistry , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...