Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
ChemSusChem ; : e202301471, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38300463

ABSTRACT

A wide array of carbon materials finds extensive utility across various industrial applications today. Nonetheless, the production processes for these materials continue to entail elevated temperatures, necessitate the use of inert atmospheres, and often involve the handling of aggressive and toxic chemicals. The prevalent method for large-scale carbon material production, namely the pyrolysis of waste biomass and polymers, typically unfolds within the temperature range of 500-700 °C under a nitrogen (N2 ) atmosphere. Unfortunately, this approach suffers from significant energy inefficiency due to substantial heat loss over extended processing durations. In this work, we propose an interesting alternative: the carbonization of photothermal nanocellulose/polypyrrole composite films through CO2 laser irradiation in the presence of air. This innovative technique offers a swift and energy-efficient means of preparing carbon materials. The unique interaction between nanocellulose and polypyrrole imparts the film with sufficient stability to retain its structural integrity post-carbonization. This breakthrough opens up new avenues for producing binder-free electrodes using a rapid and straightforward approach. Furthermore, the irradiated film demonstrates specific and areal capacitances of 159 F g-1 and 62 µF cm-2 , respectively, when immersed in a 2 M NaOH electrolyte. These values significantly surpass those achieved by current commercial activated carbons. Together, these attributes render CO2 -laser carbonization an environmentally sustainable and ecologically friendly method for carbon material production.

2.
Adv Sci (Weinh) ; 11(6): e2306771, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38059817

ABSTRACT

Knowledge about capacity losses related to the solid electrolyte interphase (SEI) in sodium-ion batteries (SIBs) is still limited. One major challenge in SIBs is that the solubility of SEI species in liquid electrolytes is comparatively higher than the corresponding species formed in Li-ion batteries. This study sheds new light on the associated capacity losses due to initial SEI formation, SEI dissolution and subsequent SEI reformation, charge leakage via SEI and subsequent SEI growth, and diffusion-controlled sodium trapping in electrode particles. By using a variety of electrochemical cycling protocols, synchrotron-based X-ray photoelectron spectroscopy (XPS), gas chromatography coupled with mass spectrometry (GC-MS), and proton nuclear magnetic resonance (1 H-NMR) spectroscopy, capacity losses due to changes in the SEI layer during different open circuit pause times are investigated in nine different electrolyte solutions. It is shown that the amount of capacity lost depends on the interplay between the electrolyte chemistry and the thickness and stability of the SEI layer. The highest capacity loss is measured in NaPF6 in ethylene carboante mixed with diethylene carbonate electrolyte (i.e., 5 µAh h-1/2 pause or 2.78 mAh g·h-1/2 pause ) while the lowest value is found in NaTFSI in ethylene carbonate mixed with dimethoxyethance electrolyte (i.e., 1.3 µAh h-1/2 pause or 0.72 mAh g·h-1/2 pause ).

3.
Small ; 19(43): e2306829, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37661360

ABSTRACT

The development of "anode-free" lithium-metal batteries with high energy densities is, at present, mainly limited by the poor control of the nucleation of lithium directly on the copper current collector, especially in conventional carbonate electrolytes. It is therefore essential to improve the understanding of the lithium nucleation process and its interactions with the copper substrate. In this study, it is shown that diffusion of lithium into the copper substrate, most likely via the grain boundaries, can significantly influence the nucleation process. Such diffusion makes it more difficult to obtain a great number of homogeneously distributed lithium nuclei on the copper surface and thus leads to inhomogeneous electrodeposition. It is, however, demonstrated that the nucleation of lithium on copper is significantly improved if an initial chemical prelithiation of the copper surface is performed. This prelithiation saturates the copper surface with lithium and hence decreases the influence of lithium diffusion via the grain boundaries. In this way, the lithium nucleation can be made to take place more homogenously, especially when a short potentiostatic nucleation pulse that can generate a large number of nuclei on the surface of the copper substrate is applied.

4.
ACS Omega ; 7(45): 41696-41710, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36406498

ABSTRACT

The pursuit of new and better battery materials has given rise to numerous studies of the possibilities to use two-dimensional negative electrode materials, such as MXenes, in lithium-ion batteries. Nevertheless, both the origin of the capacity and the reasons for significant variations in the capacity seen for different MXene electrodes still remain unclear, even for the most studied MXene: Ti3C2 T x . Herein, freestanding Ti3C2 T x MXene films, composed only of Ti3C2 T x MXene flakes, are studied as additive-free negative lithium-ion battery electrodes, employing lithium metal half-cells and a combination of chronopotentiometry, cyclic voltammetry, X-ray photoelectron spectroscopy, hard X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy experiments. The aim of this study is to identify the redox reactions responsible for the observed reversible and irreversible capacities of Ti3C2 T x -based lithium-ion batteries as well as the reasons for the significant capacity variation seen in the literature. The results demonstrate that the reversible capacity mainly stems from redox reactions involving the T x -Ti-C titanium species situated on the surfaces of the MXene flakes, whereas the Ti-C titanium present in the core of the flakes remains electro-inactive. While a relatively low reversible capacity is obtained for electrodes composed of pristine Ti3C2 T x MXene flakes, significantly higher capacities are seen after having exposed the flakes to water and air prior to the manufacturing of the electrodes. This is ascribed to a change in the titanium oxidation state at the surfaces of the MXene flakes, resulting in increased concentrations of Ti(II), Ti(III), and Ti(IV) in the T x -Ti-C surface species. The significant irreversible capacity seen in the first cycles is mainly attributed to the presence of residual water in the Ti3C2 T x electrodes. As the capacities of Ti3C2 T x MXene negative electrodes depend on the concentration of Ti(II), Ti(III), and Ti(IV) in the T x -Ti-C surface species and the water content, different capacities can be expected when using different manufacturing, pretreatment, and drying procedures.

5.
Adv Mater ; 34(19): e2108827, 2022 May.
Article in English | MEDLINE | ID: mdl-35218260

ABSTRACT

Rechargeable lithium-based batteries generally exhibit gradual capacity losses resulting in decreasing energy and power densities. For negative electrode materials, the capacity losses are largely attributed to the formation of a solid electrolyte interphase layer and volume expansion effects. For positive electrode materials, the capacity losses are, instead, mainly ascribed to structural changes and metal ion dissolution. This review focuses on another, so far largely unrecognized, type of capacity loss stemming from diffusion of lithium atoms or ions as a result of concentration gradients present in the electrode. An incomplete delithiation step is then seen for a negative electrode material while an incomplete lithiation step is obtained for a positive electrode material. Evidence for diffusion-controlled capacity losses is presented based on published experimental data and results obtained in recent studies focusing on this trapping effect. The implications of the diffusion-controlled Li-trapping induced capacity losses, which are discussed using a straightforward diffusion-based model, are compared with those of other phenomena expected to give capacity losses. Approaches that can be used to identify and circumvent the diffusion-controlled Li-trapping problem (e.g., regeneration of cycled batteries) are discussed, in addition to remaining challenges and proposed future research directions within this important research area.

6.
ACS Appl Mater Interfaces ; 13(28): 32989-32996, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34251812

ABSTRACT

The electrochemical potential difference (ΔµÌ…) is the driving force for the transfer of a charged species from one phase to another in a redox reaction. In Li-ion batteries (LIBs), ΔµÌ… values for both electrons and Li-ions play an important role in the charge-transfer kinetics at the electrode/electrolyte interfaces. Because of the lack of suitable measurement techniques, little is known about how ΔµÌ… affects the redox reactions occurring at the solid/liquid interfaces during LIB operation. Herein, we outline the relations between different potentials and show how ambient pressure photoelectron spectroscopy (APPES) can be used to follow changes in ΔµÌ…e over the solid/liquid interfaces operando by measuring the kinetic energy (KE) shifts of the electrolyte core levels. The KE shift versus applied voltage shows a linear dependence of ∼1 eV/V during charging of the electrical double layer and during solid electrolyte interphase formation. This agrees with the expected results for an ideally polarizable interface. During lithiation, the slope changes drastically. We propose a model to explain this based on charge transfer over the solid/liquid interface.

7.
ACS Sens ; 6(7): 2546-2552, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34184534

ABSTRACT

Label-free potentiometric detection of DNA molecules using a field-effect transistor (FET) with a gold gate offers an electrical sensing platform for rapid, straightforward, and inexpensive analyses of nucleic acid samples. To induce DNA hybridization on the FET sensor surface to enable potentiometric detection, probe DNA that is complementary to the target DNA has to be immobilized on the FET gate surface. A common method for probe DNA functionalization is based on thiol-gold chemistry, immobilizing thiol-modified probe DNA on a gold gate with thiol-gold bonds. A self-assembled monolayer (SAM), based on the same thiol-gold chemistry, is also needed to passivate the rest of the gold gate surface to prevent non-specific adsorption and to enable favorable steric configuration of the probe DNA. Herein, the applicability of such FET-based potentiometric DNA sensing was carefully investigated, using a silicon nanoribbon FET with a gold-sensing gate modified with thiol-gold chemistry. We discover that the potential of the gold-sensing electrode is determined by the mixed potential of the gold-thiol and gold-oxygen redox interactions. This mixed potential gives rise to a redox buffer effect which buffers the change in the surface charge induced by the DNA hybridization, thus suppressing the potentiometric signal. Analogous redox buffer effects may also be present for other types of potentiometric detections of biomarkers based on thiol-gold chemistry.


Subject(s)
Biosensing Techniques , Gold , DNA/genetics , Electrodes , Oxidation-Reduction , Sulfhydryl Compounds , Transistors, Electronic
8.
Langmuir ; 37(19): 6032-6041, 2021 May 18.
Article in English | MEDLINE | ID: mdl-33938763

ABSTRACT

The controlled growth of surface-supported metal nanoparticles (NPs) is essential to a broad range of applications. To this end, we explore the seeded growth of highly ordered arrays of substrate-supported Au NPs through a fully orthogonal design of experiment (DoE) scheme applied to a reaction system consisting of HAuCl4, citrate, and hydrogen peroxide. Scanning electron microscopy in combination with digital image analysis (DIA) is used to quantitatively characterize the resultant NP populations in terms of both particle and array features. The effective optical properties of the NP arrays are additionally analyzed using spectroscopic ellipsometry (SE), allowing characteristics of the localized surface plasmon resonances (LSPRs) of the arrays to be quantified. We study the dependence of the DIA- and SE-extracted features on the different reagent concentrations through modeling using multiple linear regression with backward elimination of independent variables. A process window is identified for which uniform arrays of quasi-spherical Au NPs are grown over large surface areas. Aside from reagent concentrations the system is highly sensitive to the hydrodynamic conditions during the deposition. This issue is likely caused by an Au precursor mass-transport limitation of the reduction reaction and it is found that agitation of the growth medium is best avoided to ensure a macroscopically even deposition. Parasitic homogeneous nucleation can also be a challenge and was separately studied in a full DoE scheme with equivalent growth media but without substrates, using optical tracking of the solutions over time. Conditions yielding quasi-spherical surface-supported NPs are found to also be affiliated with strong tendencies for parasitic homogeneous nucleation and thereby loss of Au precursor, but addition of polyvinyl alcohol can possibly help alleviate this issue.

9.
Adv Mater ; 33(28): e2000892, 2021 Jul.
Article in English | MEDLINE | ID: mdl-32557867

ABSTRACT

Recent findings demonstrate that cellulose, a highly abundant, versatile, sustainable, and inexpensive material, can be used in the preparation of very stable and flexible electrochemical energy storage devices with high energy and power densities by using electrodes with high mass loadings, composed of conducting composites with high surface areas and thin layers of electroactive material, as well as cellulose-based current collectors and functional separators. Close attention should, however, be paid to the properties of the cellulose (e.g., porosity, pore distribution, pore-size distribution, and crystallinity). The manufacturing of cellulose-based electrodes and all-cellulose devices is also well-suited for large-scale production since it can be made using straightforward filtration-based techniques or paper-making approaches, as well as utilizing various printing techniques. Herein, the recent development and possibilities associated with the use of cellulose are discussed, regarding the manufacturing of electrochemical energy storage devices comprising electrodes with high energy and power densities and lightweight current collectors and functional separators.

10.
Angew Chem Int Ed Engl ; 60(9): 4855-4863, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33169891

ABSTRACT

The interfacial reactions in sodium-ion batteries (SIBs) are not well understood yet. The formation of a stable solid electrolyte interphase (SEI) in SIBs is still challenging due to the higher solubility of the SEI components compared to lithium analogues. This study therefore aims to shed light on the dissolution of SEI influenced by the electrolyte chemistry. By conducting electrochemical tests with extended open circuit pauses, and using surface spectroscopy, we determine the extent of self-discharge due to SEI dissolution. Instead of using a conventional separator, ß-alumina was used as sodium-conductive membrane to avoid crosstalk between the working and sodium-metal counter electrode. The relative capacity loss after a pause of 50 hours in the tested electrolyte systems ranges up to 30 %. The solubility of typical inorganic SEI species like NaF and Na2 CO3 was determined. The electrolytes were then saturated by those SEI species in order to oppose ageing due to the dissolution of the SEI.

11.
Langmuir ; 36(24): 6848-6858, 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32531167

ABSTRACT

While seeded growth of quasi-spherical colloidal Au nanoparticles (NPs) has been extensively explored in the literature, the growth of surface supported arrays of such particles has received less attention. The latter scenario offers some significant challenges, including the attainment of sufficient particle-substrate adhesion, growth-selectivity, and uniform mass-transport. To this end, a reaction system consisting of HAuCl4, citrate, and H2O2 is here investigated for the growth of supported arrays of 10 nm Au seeds, derived via block copolymer (BCP) lithography. The effects of the reagent concentrations on the properties of the resultant NPs are evaluated. It is found that inclusion of citrate in the growth medium causes substantial particle desorption from Si surfaces. However, the presence of citrate also yields NPs with more uniformly circular top-view cross sections ("quasi-circular"), motivating the exploration of particle immobilization methods. We demonstrate that atomic layer deposition (ALD) of a single cycle of HfO2 (∼1 Å), after the seed particle formation, promotes adhesion sufficiently to enable the use of citrate without the added oxide noticeably affecting the shape of the resultant NPs. The presented ALD-based approach differs from the conventional sequence of depositing the adhesion layer prior to the seed particle formation and may have advantages in various processing schemes, such as when surface grafting of brush layers is required in the BCP lithography process. A proof-of-concept is provided for the growth of large-area arrays of supported "quasi-circular" Au NPs, in a rapid one-step process at room temperature.

12.
ACS Sens ; 5(1): 217-224, 2020 01 24.
Article in English | MEDLINE | ID: mdl-31833355

ABSTRACT

As the signals of potentiometric-based DNA ion-selective field effect transistor (ISFET) sensors differ largely from report to report, a systematic revisit to this method is needed. Herein, the hybridization of the target and the probe DNA on the sensor surface and its dependence on the surface probe DNA coverage and the ionic strength were systematically investigated by surface plasmon resonance (SPR). The maximum potentiometric DNA hybridization signal that could be registered by an ISFET sensor was estimated based on the SPR measurements, without considering buffering effects from any side interaction on the sensing electrode. We found that under physiological solutions (200 to 300 mM ionic strength), the ISFET sensor could not register the DNA hybridization events on the sensor surface due to Debye screening. Lowering the salt concentration to enlarge the Debye length would at the same time reduce the surface hybridization efficiency, thus suppressing the signal. This adverse effect of low salt concentration on the hybridization efficiency was also found to be more significant on the surface with higher probe coverage due to steric hindrance. With the method of diluting buffer, the maximum potentiometric signal generated by the DNA hybridization was estimated to be only around 120 mV with the lowest detection limit of 30 nM, occurring on a surface with optimized probe coverage and in the tris buffer with 10 mM NaCl. An alternative method would be to achieve high-efficiency hybridization in the buffer with high salt concentration (1 M NaCl) and then to perform potentiometric measurements in the buffer with low salt concentration (1 mM NaCl). Based on the characterization of the stability of the hybridized DNA duplexes on the sensor surface in low salt concentration buffer solutions, the estimated maximum potentiometric signal could be significantly higher using the alternative method. The lowest detection limit for this alternative method was estimated to be around 0.6 nM. This work can serve as an important quantitative reference for potentiometric DNA sensors.


Subject(s)
Biosensing Techniques/methods , DNA/genetics , Surface Plasmon Resonance/methods , Humans , Limit of Detection
13.
Anal Chem ; 91(22): 14697-14704, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31650834

ABSTRACT

Despite a large number of publications describing biosensors based on electrochemical impedance spectroscopy (EIS), little attention has been paid to the stability and reproducibility issues of the sensor interfaces. In this work, the stability and reproducibility of faradaic EIS analyses on the aptamer/mercaptohexanol (MCH) self-assembled monolayer (SAM)-functionalized gold surfaces in ferri- and ferrocyanide solution were systematically evaluated prior to and after the aptamer-probe DNA hybridization. It is shown that the EIS data exhibited significant drift, and this significantly affected the reproducibility of the EIS signal of the hybridization. As a result, no significant difference between the charge transfer resistance (RCT) changes induced by the aptamer-target DNA hybridization and that caused by the drift could be identified. A conditioning of the electrode in the measurement solution for more than 12 h was required to reach a stable RCT baseline prior to the aptamer-probe DNA hybridization. The monitored drift in RCT and double layer capacitance during the conditioning suggests that the MCH SAM on the gold surface reorganized to a thinner but more closely packed layer. We also observed that the hot binding buffer used in the following aptamer-probe DNA hybridization process could induce additional MCH and aptamer reorganization, and thus further drift in RCT. As a result, the RCT change caused by the aptamer-probe DNA hybridization was less than that caused by the hot binding buffer (blank control experiment). Therefore, it is suggested that the use of high temperature in the EIS measurement should be carefully evaluated or avoided. This work provides practical guidelines for the EIS measurements. Moreover, because SAM-functionalized gold electrodes are widely used in biosensors, for example, DNA sensors, an improved understanding of the origin of the observed drift is very important for the development of well-functioning and reproducible biosensors.


Subject(s)
Aptamers, Nucleotide/chemistry , DNA Probes/chemistry , DNA, Single-Stranded/chemistry , Hexanols/chemistry , Membranes, Artificial , Sulfhydryl Compounds/chemistry , Aptamers, Nucleotide/genetics , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , DNA Probes/genetics , DNA, Single-Stranded/genetics , Dielectric Spectroscopy/instrumentation , Dielectric Spectroscopy/methods , Electrodes , Gold/chemistry , Nucleic Acid Hybridization , Reproducibility of Results
14.
ChemSusChem ; 12(23): 5157-5163, 2019 Dec 06.
Article in English | MEDLINE | ID: mdl-31613052

ABSTRACT

Herein, a one-step synthesis protocol was developed for synthesizing freestanding/flexible paper electrodes composed of nanostructured molybdenum oxide (MoO3-x ) embedded in a carbon nanotube (CNT) and Cladophora cellulose (CC) matrix. The preparation method involved sonication of the precursors, nanostructured MoO3-x , CNTs, and CC with weight ratios of 7:2:1, in a water/ethanol mixture, followed by vacuum filtration. The electrodes were straightforward to handle and possessed a thickness of approximately 12 µm and a mass loading of MoO3-x -CNTs of approximately 0.9 mg cm-2 . The elemental mapping showed that the nanostructured MoO3-x was uniformly embedded inside the CNTs-CC matrix. The MoO3-x -CNTs-CC paper electrodes featured a capacity of 30 C g-1 , normalized to the mass of MoO3-x -CNTs, at a current density of 78 A g-1 (corresponding to a rate of approximately 210 C based on the MoO3 content, assuming a theoretical capacity of 1339 C g-1 ), and exhibited a capacity retention of 91 % over 30 000 cycles. This study paves the way for the manufacturing of flexible/freestanding nanostructured MoO3-x -based electrodes for use in charge-storage devices at high charge/discharge rates.

15.
Acc Chem Res ; 52(8): 2232-2243, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31290643

ABSTRACT

Because of its natural abundance, hierarchical fibrous structure, mechanical flexibility, potential for chemical modification, biocompatibility, renewability, and abundance, cellulose is one of the most promising green materials for a bio-based future and sustainable economy. Cellulose derived from wood or bacteria has dominated the industrial cellulose market and has been developed to produce a number of advanced materials for applications in energy storage, environmental, and biotechnology areas. However, Cladophora cellulose (CC) extracted from green algae has unprecedented advantages over those celluloses because of its high crystallinity (>95%), low moisture adsorption capacity, excellent solution processability, high porosity in the mesoporous range, and associated high specific surface area. The unique physical and chemical properties of CC can add new features to and enhance the performance of nanocellulose-based materials, and these attributes have attracted a great deal of research interest over the past decade. This Account summarizes our recent research on the preparation, characterization, functionalization, and versatile applications of CC. Our aim is to provide a comprehensive overview of the uniqueness of CC with respect to material structure, properties, and emerging applications. We discuss the potential of CC in energy storage, environmental science, and life science, with emphasis on applications in which its properties are superior to those of other nanocellulose forms. Specifically, we discuss the production of the first-ever paper battery based on CC. This battery has initiated a rising interest in the development of sustainable paper-based energy storage devices, where cellulose is used as a combined building block and binder for paper electrodes of various types in combination with carbon, conducting polymers, and other electroactive materials. High-active-mass and high-mass-loading paper electrodes can be made in which the CC acts as a high-surface-area and porous substrate while a thin layer of electroactive material is coated on individual nanofibrils. We have shown that CC membranes can be used directly as battery separators because of their low moisture content, high mesoporosity, high thermal stability, and good electrolyte wettability. The safety, stability, and capacity of lithium-ion batteries can be enhanced simply by using CC-based separators. Moreover, the high chemical modifiability and adjustable porosity of dried CC papers allow them to be used as advanced membranes for environmental science (water and air purification, pollutant adsorption) and life science (virus isolation, protein recovery, hemodialysis, DNA extraction, bioactive substrates). Finally, we outline some concluding perspectives on the challenges and future directions of CC research with the aim to open up yet unexplored fields of use for this interesting material.


Subject(s)
Cellulose/chemistry , Chlorophyta/chemistry , Nanofibers/chemistry , Air Filters , Cell Line , Cellulose/ultrastructure , Electric Power Supplies , Electrodes , Filtration/instrumentation , Filtration/methods , Humans , Nanofibers/ultrastructure , Porosity , Water Purification/instrumentation , Water Purification/methods
16.
Small ; 14(21): e1704371, 2018 May.
Article in English | MEDLINE | ID: mdl-29675952

ABSTRACT

Poor cycling stability and safety concerns regarding lithium (Li) metal anodes are two major issues preventing the commercialization of high-energy density Li metal-based batteries. Herein, a novel tri-layer separator design that significantly enhances the cycling stability and safety of Li metal-based batteries is presented. A thin, thermally stable, flexible, and hydrophilic cellulose nanofiber layer, produced using a straightforward paper-making process, is directly laminated on each side of a plasma-treated polyethylene (PE) separator. The 2.5 µm thick, mesoporous (≈20 nm average pore size) cellulose nanofiber layer stabilizes the Li metal anodes by generating a uniform Li+ flux toward the electrode through its homogenous nanochannels, leading to improved cycling stability. As the tri-layer separator maintains its dimensional stability even at 200 °C when the internal PE layer is melted and blocks the ion transport through the separator, the separator also provides an effective thermal shutdown function. The present nanocellulose-based tri-layer separator design thus significantly facilitates the realization of high-energy density Li metal-based batteries.

17.
Adv Sci (Weinh) ; 5(3): 1700663, 2018 03.
Article in English | MEDLINE | ID: mdl-29593967

ABSTRACT

A bilayered cellulose-based separator design is presented that can enhance the electrochemical performance of lithium-ion batteries (LIBs) via the inclusion of a porous redox-active layer. The proposed flexible redox-active separator consists of a mesoporous, insulating nanocellulose fiber layer that provides the necessary insulation between the electrodes and a porous, conductive, and redox-active polypyrrole-nanocellulose layer. The latter layer provides mechanical support to the nanocellulose layer and adds extra capacity to the LIBs. The redox-active separator is mechanically flexible, and no internal short circuits are observed during the operation of the LIBs, even when the redox-active layer is in direct contact with both electrodes in a symmetric lithium-lithium cell. By replacing a conventional polyethylene separator with a redox-active separator, the capacity of the proof-of-concept LIB battery containing a LiFePO4 cathode and a Li metal anode can be increased from 0.16 to 0.276 mA h due to the capacity contribution from the redox-active separator. As the presented redox-active separator concept can be used to increase the capacities of electrochemical energy storage systems, this approach may pave the way for new types of functional separators.

18.
ACS Appl Mater Interfaces ; 10(3): 2407-2413, 2018 Jan 24.
Article in English | MEDLINE | ID: mdl-29199816

ABSTRACT

3D microbatteries (3D-MBs) impose new demands for the selection, fabrication, and compatibility of the different battery components. Herein, solid polymer electrolytes (SPEs) based on poly(trimethylene carbonate) (PTMC) have been implemented in 3D-MB systems. 3D electrodes of two different architectures, LiFePO4-coated carbon foams and Cu2O-coated Cu nanopillars, have been coated with SPEs and used in Li cells. Functionalized PTMC with hydroxyl end groups was found to enable uniform and well-covering coatings on LiFePO4-coated carbon foams, which was difficult to achieve for nonfunctionalized polymers, but the cell cycling performance was limited. By employing a SPE prepared from a copolymer of TMC and caprolactone (CL), with higher ionic conductivity, Li cells composed of Cu2O-coated Cu nanopillars were constructed and tested both at ambient temperature and 60 °C. The footprint areal capacity of the cells was ca. 0.02 mAh cm-2 for an area gain factor (AF) of 2.5, and 0.2 mAh cm-2 for a relatively dense nanopillar-array (AF = 25) at a current density of 0.008 mA cm-2 under ambient temperature (22 ± 1 °C). These results provide new routes toward the realization of all-solid-state 3D-MBs.

19.
ACS Appl Mater Interfaces ; 9(31): 26610-26621, 2017 Aug 09.
Article in English | MEDLINE | ID: mdl-28726367

ABSTRACT

Despite the increasing popularity of microfabricated biosensors due to advances in technologic and surface functionalization strategies, their successful implementation is partially inhibited by the lack of consistency in their analytical characteristics. One of the main causes for the discrepancies is the absence of a systematic and comprehensive approach to surface functionalization. In this article microfabricated gold electrodes aimed at biosensor development have been systematically characterized in terms of surface pretreatment, thiolated molecule binding, and reproducibility by means of X-ray photoelectron scattering (XPS) and cyclic voltammetry (CV). It has been shown that after SU-8 photolithography gold surfaces were markedly contaminated, which decreased the effective surface area and surface coverage of a model molecule mercaptohexanol (MCH). Three surface pretreatment methods compatible with microfabricated devices were compared. The investigated methods were (i) cyclic voltammetry in dilute H2SO4, (ii) gentle basic piranha followed by linear sweep voltammetry in dilute KOH, and (iii) oxygen plasma treatment followed by incubation in ethanol. It was shown that all three methods significantly decreased the contamination and increased MCH surface coverage. Most importantly, it was also revealed that surface pretreatments may induce structural changes to the gold surfaces. Accordingly, these alterations influence the characteristics of MCH functionalization.

20.
Bioelectrochemistry ; 112: 184-90, 2016 Dec.
Article in English | MEDLINE | ID: mdl-26936112

ABSTRACT

Enzymatic electrodes with high internal capacitance, based on cellulose/polypyrrole composite were optimized and utilized to design improved enzymatic fuel cell. Fructose dehydrogenase Gluconobacter sp. specifically adsorbed on the cellulose/polypyrrole matrix and electrophoretically immobilized and electrochemically entrapped Laccase Trametes versicolor, were used as the anode and cathode bioelectrocatalysts, respectively. The cellulose/polypyrrole composite film exhibited pseudocapacitive properties under mild pH conditions. Following modification with carboxylic groups the composite material enabled highly efficient adsorption of enzyme and provided good electrical contact between the enzymatic active sites and the electrode surface. The modified cellulose/polypyrrole composite based electrode was used for the anode leading to mediatorless fructose oxidation giving large catalytic current density, 12.8mAcm(-2). Laccase and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) as the mediator entrapped in the cellulose/polypyrrole composite film generated dioxygen reduction current density of 2mAcm(-2). Application of pseudocapacitive matrix and decreasing the distance between electrodes to 1mm lead to improvement of the biofuel cell power output and its regeneration ability. The power of the cell was found to increase by introduction of a preconditioning step during which the cell was kept at open circuit voltage under fuel flow. After 24h of preconditioning the matrix was recharged and the device output reached the power, 2.1mWcm(-2) and OCV, 0.59V.


Subject(s)
Bioelectric Energy Sources , Cellulose/chemistry , Electric Capacitance , Polymers/chemistry , Pyrroles/chemistry , Electrodes , Electrophoresis , Fructose/chemistry , Laccase/chemistry , Laccase/metabolism , Trametes/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...