Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 6: 34437, 2016 Sep 30.
Article in English | MEDLINE | ID: mdl-27687975

ABSTRACT

Cilia are cell surface organelles with key roles in a range of cellular processes, including generation of fluid flow by motile cilia. The axonemes of motile cilia and immotile kinocilia contain 9 peripheral microtubule doublets, a central microtubule pair, and 9 connecting radial spokes. Aberrant radial spoke components RSPH1, 3, 4a and 9 have been linked with primary ciliary dyskinesia (PCD), a disorder characterized by ciliary dysmotility; yet, radial spoke functions remain unclear. Here we show that zebrafish Rsph9 is expressed in cells bearing motile cilia and kinocilia, and localizes to both 9 + 2 and 9 + 0 ciliary axonemes. Using CRISPR mutagenesis, we show that rsph9 is required for motility of presumptive 9 + 2 olfactory cilia and, unexpectedly, 9 + 0 neural cilia. rsph9 is also required for the structural integrity of 9 + 2 and 9 + 0 ciliary axonemes. rsph9 mutant larvae exhibit reduced initiation of the acoustic startle response consistent with hearing impairment, suggesting a novel role for Rsph9 in the kinocilia of the inner ear and/or lateral line neuromasts. These data identify novel roles for Rsph9 in 9 + 0 motile cilia and in sensory kinocilia, and establish a useful zebrafish PCD model.

2.
Dev Biol ; 380(1): 73-86, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23665173

ABSTRACT

Holoprosencephaly (HPE), the most common malformation of the human forebrain, is associated with defects of the craniofacial skeleton. ZIC2, a zinc-finger transcription factor, is strongly linked to HPE and to a characteristic set of dysmorphic facial features in humans. We have previously identified important functions for zebrafish Zic2 in the developing forebrain. Here, we demonstrate that ZIC2 orthologs zic2a and zic2b also regulate the forming zebrafish craniofacial skeleton, including the jaw and neurocranial cartilages, and use the zebrafish to study Zic2-regulated processes that may contribute to the complex etiology of HPE. Using temporally controlled Zic2a overexpression, we show that the developing craniofacial cartilages are sensitive to Zic2 elevation prior to 24hpf. This window of sensitivity overlaps the critical expansion and migration of the neural crest (NC) cells, which migrate from the developing neural tube to populate vertebrate craniofacial structures. We demonstrate that zic2b influences the induction of NC at the neural plate border, while both zic2a and zic2b regulate NC migratory onset and strongly contribute to chromatophore development. Both Zic2 depletion and early ectopic Zic2 expression cause moderate, incompletely penetrant mispatterning of the NC-derived jaw precursors at 24hpf, yet by 2dpf these changes in Zic2 expression result in profoundly mispatterned chondrogenic condensations. We attribute this discrepancy to an additional role for Zic2a and Zic2b in patterning the forebrain primordium, an important signaling source during craniofacial development. This hypothesis is supported by evidence that transplanted Zic2-deficient cells can contribute to craniofacial cartilages in a wild-type background. Collectively, these data suggest that zebrafish Zic2 plays a dual role during craniofacial development, contributing to two disparate aspects of craniofacial morphogenesis: (1) neural crest induction and migration, and (2) early patterning of tissues adjacent to craniofacial chondrogenic condensations.


Subject(s)
Gene Expression Regulation, Developmental , Neural Crest/cytology , Skull/embryology , Transcription Factors/physiology , Zebrafish Proteins/physiology , Zebrafish/embryology , Animals , Body Patterning , Brain/embryology , Cartilage/metabolism , Chondrocytes/cytology , DNA-Binding Proteins , Gene Expression Profiling , Holoprosencephaly , Mutation , Recombinant Fusion Proteins/metabolism , Transcription Factors/genetics , Zebrafish Proteins/genetics
3.
Development ; 136(22): 3791-800, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19855021

ABSTRACT

Holoprosencephaly (HPE) is the most common congenital malformation of the forebrain in human. Several genes with essential roles during forebrain development have been identified because they cause HPE when mutated. Among these are genes that encode the secreted growth factor Sonic hedgehog (Shh) and the transcription factors Six3 and Zic2. In the mouse, Six3 and Shh activate each other's transcription, but a role for Zic2 in this interaction has not been tested. We demonstrate that in zebrafish, as in mouse, Hh signaling activates transcription of six3b in the developing forebrain. zic2a is also activated by Hh signaling, and represses six3b non-cell-autonomously, i.e. outside of its own expression domain, probably through limiting Hh signaling. Zic2a repression of six3b is essential for the correct formation of the prethalamus. The diencephalon-derived optic stalk (OS) and neural retina are also patterned in response to Hh signaling. We show that zebrafish Zic2a limits transcription of the Hh targets pax2a and fgf8a in the OS and retina. The effects of Zic2a depletion in the forebrain and in the OS and retina are rescued by blocking Hh signaling or by increasing levels of the Hh antagonist Hhip, suggesting that in both tissues Zic2a acts to attenuate the effects of Hh signaling. These data uncover a novel, essential role for Zic2a as a modulator of Hh-activated gene expression in the developing forebrain and advance our understanding of a key gene regulatory network that, when disrupted, causes HPE.


Subject(s)
Gene Expression Regulation, Developmental , Prosencephalon/metabolism , Transcription Factors/metabolism , Zebrafish Proteins/metabolism , Zebrafish/embryology , Animals , Eye Proteins/metabolism , Homeodomain Proteins/metabolism , Nerve Tissue Proteins/metabolism , PAX2 Transcription Factor/metabolism , Homeobox Protein SIX3
4.
J Cell Sci ; 122(Pt 12): 2137-48, 2009 Jun 15.
Article in English | MEDLINE | ID: mdl-19470582

ABSTRACT

During neurulation, vertebrate embryos form a neural tube (NT), the rudiment of the central nervous system. In mammals and birds, a key step in cranial NT morphogenesis is dorsolateral hinge-point (DLHP) bending, which requires an apical actomyosin network. The mechanism of DLHP formation is poorly understood, although several essential genes have been identified, among them Zic2, which encodes a zinc-finger transcription factor. We found that DLHP formation in the zebrafish midbrain also requires actomyosin and Zic function. Given this conservation, we used the zebrafish to study how genes encoding Zic proteins regulate DLHP formation. We demonstrate that the ventral zic2a expression border predicts DLHP position. Using morpholino (MO) knockdown, we show zic2a and zic5 are required for apical F-actin and active myosin II localization and junction integrity. Furthermore, myosin II activity can function upstream of junction integrity during DLHP formation, and canonical Wnt signaling, an activator of zic gene transcription, is necessary for apical active myosin II localization, junction integrity and DLHP formation. We conclude that zic genes act downstream of Wnt signaling to control cytoskeletal organization, and possibly adhesion, during neurulation. This study identifies zic2a and zic5 as crucial players in the genetic network linking patterned gene expression to morphogenetic changes during neurulation, and strengthens the utility of the zebrafish midbrain as a NT morphogenesis model.


Subject(s)
Brain/embryology , Neurulation/genetics , Zebrafish/embryology , Zebrafish/genetics , Actins/metabolism , Animals , Cell Cycle/genetics , Cell Proliferation , DNA-Binding Proteins/genetics , Embryo, Nonmammalian , Embryonic Development/genetics , Gene Expression Regulation, Developmental , Intercellular Junctions/genetics , Intercellular Junctions/metabolism , Models, Biological , Myosin Type II/metabolism , Transcription Factors/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/physiology
5.
Development ; 134(4): 735-46, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17215296

ABSTRACT

Wnt growth factors acting through the canonical intracellular signaling cascade play fundamental roles during vertebrate brain development. In particular, canonical Wnt signaling is crucial for normal development of the dorsal midbrain, the future optic tectum. Wnts act both as patterning signals and as regulators of cell growth. In the developing tectum, Wnt signaling is mitogenic; however, the mechanism of Wnt function is not known. As a step towards better understanding this mechanism, we have identified two new Wnt targets, the closely linked zic2a and zic5 genes. Using a combination of in vivo assays, we show that zic2a and zic5 transcription is activated by Tcf/Lef transcription factors in the dorsal midbrain. Zic2a and Zic5, in turn, have essential, cooperative roles in promoting cell proliferation in the tectum, but lack obvious patterning functions. Collectively these findings suggest that Wnts control midbrain proliferation, at least in part, through regulation of two novel target genes, the zic2a-zic5 gene pair.


Subject(s)
DNA-Binding Proteins/genetics , Tectum Mesencephali/growth & development , Wnt Proteins/physiology , Zebrafish Proteins/genetics , Animals , Body Patterning , Cell Proliferation , DNA-Binding Proteins/physiology , Embryo, Nonmammalian , Mesencephalon/cytology , Mesencephalon/embryology , Mesencephalon/growth & development , Signal Transduction , Tectum Mesencephali/cytology , Tectum Mesencephali/embryology , Transcriptional Activation , Zebrafish , Zebrafish Proteins/physiology
6.
Development ; 132(6): 1247-60, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15716348

ABSTRACT

Monocilia have been proposed to establish the left-right (LR) body axis in vertebrate embryos by creating a directional fluid flow that triggers asymmetric gene expression. In zebrafish, dorsal forerunner cells (DFCs) express a conserved ciliary dynein gene (left-right dynein-related1, lrdr1) and form a ciliated epithelium inside a fluid-filled organ called Kupffer's vesicle (KV). Here, videomicroscopy demonstrates that cilia inside KV are motile and create a directional fluid flow just prior to the onset of asymmetric gene expression in lateral cells. Laser ablation of DFCs and surgical disruption of KV provide direct evidence that ciliated KV cells are required during early somitogenesis for subsequent LR patterning in the brain, heart and gut. Antisense morpholinos against lrdr1 disrupt KV fluid flow and perturb LR development. Furthermore, lrdr1 morpholinos targeted to DFC/KV cells demonstrate that Lrdr1 functions in these ciliated cells to control LR patterning. This provides the first direct evidence, in any vertebrate, that impairing cilia function in derivatives of the dorsal organizer, and not in other cells that express ciliogenic genes, alters LR development. Finally, genetic analysis reveals novel roles for the T-box transcription factor no tail and the Nodal signaling pathway as upstream regulators of lrdr1 expression and KV morphogenesis. We propose that KV is a transient embryonic 'organ of asymmetry' that directs LR development by establishing a directional fluid flow. These results suggest that cilia are an essential component of a conserved mechanism that controls the transition from bilateral symmetry to LR asymmetry in vertebrates.


Subject(s)
Brain/embryology , Gastrointestinal Tract/embryology , Heart/embryology , Zebrafish/embryology , Animals , Body Patterning/physiology , Cilia/physiology , Left-Right Determination Factors , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...