Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Hum Genomics ; 18(1): 44, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685113

ABSTRACT

BACKGROUND: A major obstacle faced by families with rare diseases is obtaining a genetic diagnosis. The average "diagnostic odyssey" lasts over five years and causal variants are identified in under 50%, even when capturing variants genome-wide. To aid in the interpretation and prioritization of the vast number of variants detected, computational methods are proliferating. Knowing which tools are most effective remains unclear. To evaluate the performance of computational methods, and to encourage innovation in method development, we designed a Critical Assessment of Genome Interpretation (CAGI) community challenge to place variant prioritization models head-to-head in a real-life clinical diagnostic setting. METHODS: We utilized genome sequencing (GS) data from families sequenced in the Rare Genomes Project (RGP), a direct-to-participant research study on the utility of GS for rare disease diagnosis and gene discovery. Challenge predictors were provided with a dataset of variant calls and phenotype terms from 175 RGP individuals (65 families), including 35 solved training set families with causal variants specified, and 30 unlabeled test set families (14 solved, 16 unsolved). We tasked teams to identify causal variants in as many families as possible. Predictors submitted variant predictions with estimated probability of causal relationship (EPCR) values. Model performance was determined by two metrics, a weighted score based on the rank position of causal variants, and the maximum F-measure, based on precision and recall of causal variants across all EPCR values. RESULTS: Sixteen teams submitted predictions from 52 models, some with manual review incorporated. Top performers recalled causal variants in up to 13 of 14 solved families within the top 5 ranked variants. Newly discovered diagnostic variants were returned to two previously unsolved families following confirmatory RNA sequencing, and two novel disease gene candidates were entered into Matchmaker Exchange. In one example, RNA sequencing demonstrated aberrant splicing due to a deep intronic indel in ASNS, identified in trans with a frameshift variant in an unsolved proband with phenotypes consistent with asparagine synthetase deficiency. CONCLUSIONS: Model methodology and performance was highly variable. Models weighing call quality, allele frequency, predicted deleteriousness, segregation, and phenotype were effective in identifying causal variants, and models open to phenotype expansion and non-coding variants were able to capture more difficult diagnoses and discover new diagnoses. Overall, computational models can significantly aid variant prioritization. For use in diagnostics, detailed review and conservative assessment of prioritized variants against established criteria is needed.


Subject(s)
Rare Diseases , Humans , Rare Diseases/genetics , Rare Diseases/diagnosis , Genome, Human/genetics , Genetic Variation/genetics , Computational Biology/methods , Phenotype
2.
HGG Adv ; 5(2): 100273, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38297832

ABSTRACT

Heterozygous missense variants and in-frame indels in SMC3 are a cause of Cornelia de Lange syndrome (CdLS), marked by intellectual disability, growth deficiency, and dysmorphism, via an apparent dominant-negative mechanism. However, the spectrum of manifestations associated with SMC3 loss-of-function variants has not been reported, leading to hypotheses of alternative phenotypes or even developmental lethality. We used matchmaking servers, patient registries, and other resources to identify individuals with heterozygous, predicted loss-of-function (pLoF) variants in SMC3, and analyzed population databases to characterize mutational intolerance in this gene. Here, we show that SMC3 behaves as an archetypal haploinsufficient gene: it is highly constrained against pLoF variants, strongly depleted for missense variants, and pLoF variants are associated with a range of developmental phenotypes. Among 14 individuals with SMC3 pLoF variants, phenotypes were variable but coalesced on low growth parameters, developmental delay/intellectual disability, and dysmorphism, reminiscent of atypical CdLS. Comparisons to individuals with SMC3 missense/in-frame indel variants demonstrated an overall milder presentation in pLoF carriers. Furthermore, several individuals harboring pLoF variants in SMC3 were nonpenetrant for growth, developmental, and/or dysmorphic features, and some had alternative symptomatologies with rational biological links to SMC3. Analyses of tumor and model system transcriptomic data and epigenetic data in a subset of cases suggest that SMC3 pLoF variants reduce SMC3 expression but do not strongly support clustering with functional genomic signatures of typical CdLS. Our finding of substantial population-scale LoF intolerance in concert with variable growth and developmental features in subjects with SMC3 pLoF variants expands the scope of cohesinopathies, informs on their allelic architecture, and suggests the existence of additional clearly LoF-constrained genes whose disease links will be confirmed only by multilayered genomic data paired with careful phenotyping.


Subject(s)
De Lange Syndrome , Intellectual Disability , Humans , Cell Cycle Proteins/genetics , Chondroitin Sulfate Proteoglycans/genetics , Chromosomal Proteins, Non-Histone/genetics , De Lange Syndrome/genetics , Heterozygote , Intellectual Disability/genetics , Mutation , Phenotype
3.
medRxiv ; 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37808847

ABSTRACT

Heterozygous missense variants and in-frame indels in SMC3 are a cause of Cornelia de Lange syndrome (CdLS), marked by intellectual disability, growth deficiency, and dysmorphism, via an apparent dominant-negative mechanism. However, the spectrum of manifestations associated with SMC3 loss-of-function variants has not been reported, leading to hypotheses of alternative phenotypes or even developmental lethality. We used matchmaking servers, patient registries, and other resources to identify individuals with heterozygous, predicted loss-of-function (pLoF) variants in SMC3, and analyzed population databases to characterize mutational intolerance in this gene. Here, we show that SMC3 behaves as an archetypal haploinsufficient gene: it is highly constrained against pLoF variants, strongly depleted for missense variants, and pLoF variants are associated with a range of developmental phenotypes. Among 13 individuals with SMC3 pLoF variants, phenotypes were variable but coalesced on low growth parameters, developmental delay/intellectual disability, and dysmorphism reminiscent of atypical CdLS. Comparisons to individuals with SMC3 missense/in-frame indel variants demonstrated a milder presentation in pLoF carriers. Furthermore, several individuals harboring pLoF variants in SMC3 were nonpenetrant for growth, developmental, and/or dysmorphic features, some instead having intriguing symptomatologies with rational biological links to SMC3 including bone marrow failure, acute myeloid leukemia, and Coats retinal vasculopathy. Analyses of transcriptomic and epigenetic data suggest that SMC3 pLoF variants reduce SMC3 expression but do not result in a blood DNA methylation signature clustering with that of CdLS, and that the global transcriptional signature of SMC3 loss is model-dependent. Our finding of substantial population-scale LoF intolerance in concert with variable penetrance in subjects with SMC3 pLoF variants expands the scope of cohesinopathies, informs on their allelic architecture, and suggests the existence of additional clearly LoF-constrained genes whose disease links will be confirmed only by multi-layered genomic data paired with careful phenotyping.

4.
medRxiv ; 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37577678

ABSTRACT

Background: A major obstacle faced by rare disease families is obtaining a genetic diagnosis. The average "diagnostic odyssey" lasts over five years, and causal variants are identified in under 50%. The Rare Genomes Project (RGP) is a direct-to-participant research study on the utility of genome sequencing (GS) for diagnosis and gene discovery. Families are consented for sharing of sequence and phenotype data with researchers, allowing development of a Critical Assessment of Genome Interpretation (CAGI) community challenge, placing variant prioritization models head-to-head in a real-life clinical diagnostic setting. Methods: Predictors were provided a dataset of phenotype terms and variant calls from GS of 175 RGP individuals (65 families), including 35 solved training set families, with causal variants specified, and 30 test set families (14 solved, 16 unsolved). The challenge tasked teams with identifying the causal variants in as many test set families as possible. Ranked variant predictions were submitted with estimated probability of causal relationship (EPCR) values. Model performance was determined by two metrics, a weighted score based on rank position of true positive causal variants and maximum F-measure, based on precision and recall of causal variants across EPCR thresholds. Results: Sixteen teams submitted predictions from 52 models, some with manual review incorporated. Top performing teams recalled the causal variants in up to 13 of 14 solved families by prioritizing high quality variant calls that were rare, predicted deleterious, segregating correctly, and consistent with reported phenotype. In unsolved families, newly discovered diagnostic variants were returned to two families following confirmatory RNA sequencing, and two prioritized novel disease gene candidates were entered into Matchmaker Exchange. In one example, RNA sequencing demonstrated aberrant splicing due to a deep intronic indel in ASNS, identified in trans with a frameshift variant, in an unsolved proband with phenotype overlap with asparagine synthetase deficiency. Conclusions: By objective assessment of variant predictions, we provide insights into current state-of-the-art algorithms and platforms for genome sequencing analysis for rare disease diagnosis and explore areas for future optimization. Identification of diagnostic variants in unsolved families promotes synergy between researchers with clinical and computational expertise as a means of advancing the field of clinical genome interpretation.

5.
Am J Med Genet C Semin Med Genet ; 193(3): e32057, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37507620

ABSTRACT

The transition from analog to digital technologies in clinical laboratory genomics is ushering in an era of "big data" in ways that will exceed human capacity to rapidly and reproducibly analyze those data using conventional approaches. Accurately evaluating complex molecular data to facilitate timely diagnosis and management of genomic disorders will require supportive artificial intelligence methods. These are already being introduced into clinical laboratory genomics to identify variants in DNA sequencing data, predict the effects of DNA variants on protein structure and function to inform clinical interpretation of pathogenicity, link phenotype ontologies to genetic variants identified through exome or genome sequencing to help clinicians reach diagnostic answers faster, correlate genomic data with tumor staging and treatment approaches, utilize natural language processing to identify critical published medical literature during analysis of genomic data, and use interactive chatbots to identify individuals who qualify for genetic testing or to provide pre-test and post-test education. With careful and ethical development and validation of artificial intelligence for clinical laboratory genomics, these advances are expected to significantly enhance the abilities of geneticists to translate complex data into clearly synthesized information for clinicians to use in managing the care of their patients at scale.


Subject(s)
Artificial Intelligence , Laboratories, Clinical , Humans , Genomics/methods , Genetic Testing , Phenotype
6.
Cancer Discov ; 13(9): 2072-2089, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37255402

ABSTRACT

Fumarate accumulation due to loss of fumarate hydratase (FH) drives cellular transformation. Germline FH alterations lead to hereditary leiomyomatosis and renal cell cancer (HLRCC) where patients are predisposed to an aggressive form of kidney cancer. There is an unmet need to classify FH variants by cancer-associated risk. We quantified catalytic efficiencies of 74 variants of uncertain significance. Over half were enzymatically inactive, which is strong evidence of pathogenicity. We next generated a panel of HLRCC cell lines expressing FH variants with a range of catalytic activities, then correlated fumarate levels with metabolic features. We found that fumarate accumulation blocks de novo purine biosynthesis, rendering FH-deficient cells reliant on purine salvage for proliferation. Genetic or pharmacologic inhibition of the purine salvage pathway reduced HLRCC tumor growth in vivo. These findings suggest the pathogenicity of patient-associated FH variants and reveal purine salvage as a targetable vulnerability in FH-deficient tumors. SIGNIFICANCE: This study functionally characterizes patient-associated FH variants with unknown significance for pathogenicity. This study also reveals nucleotide salvage pathways as a targetable feature of FH-deficient cancers, which are shown to be sensitive to the purine salvage pathway inhibitor 6-mercaptopurine. This presents a new rapidly translatable treatment strategy for FH-deficient cancers. This article is featured in Selected Articles from This Issue, p. 1949.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Skin Neoplasms , Humans , Fumarate Hydratase/genetics , Fumarate Hydratase/metabolism , Virulence , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/genetics , Skin Neoplasms/genetics , Purines
7.
Urology ; 176: 106-114, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36773955

ABSTRACT

OBJECTIVE: To clarify the link between germline variants in fumarate hydratase (FH), hereditary leiomyomatosis and renal cell cancer (HLRCC), and paraganglioma (PGL) and pheochromocytoma (PCC) we utilize a well-annotated hereditary cancer testing database. METHODS: Records of 120,061 patients receiving germline testing were obtained. FH variants were classified into 4 categories: autosomal dominant (AD) HLRCC variants, autosomal recessive (AR) fumarase deficiency (FMRD), variants, previously reported as PGL/PCC FH variants, and variants of unknown significance (VUS) not previously associated with PGL/PCC (NPP-VUS). Rates of PGL/PCC were compared with those with negative genetic testing. RESULTS: About 1.3% of individuals carried FH variants which were more common among individuals with PGL/PCC compared to those without (3.1% vs 1.3%, P < .0001). PGL/PCC rates were higher among individuals with PGL/PCC FH variants compared to those with negative genetic testing (22.2% vs 0.9%, P < .0001). Neither AD HLRCC variants (0.3% vs 0.9%, P = .35) nor AR FMRD variants (1.4% vs 0.9%, P = .19) carried an increased prevalence of PGL/PCC. An increased prevalence of PGL/PCC was detected in those with NPP-VUS (2.0% vs 0.9%, P = .0023). CONCLUSIONS: Certain FH variants confer an increased risk of PGL/PCC, but not necessarily HLRCC. While universal screening for PGL/PCC among all individuals with FH variants does not appear warranted, it should be considered in select high-risk PGL/PCC FH variants.


Subject(s)
Adrenal Gland Neoplasms , Paraganglioma , Pheochromocytoma , Skin Neoplasms , Uterine Neoplasms , Female , Humans , Adrenal Gland Neoplasms/genetics , Fumarate Hydratase/genetics , Paraganglioma/genetics , Pheochromocytoma/genetics , Skin Neoplasms/genetics
8.
J Pediatr ; 261: 113362, 2023 10.
Article in English | MEDLINE | ID: mdl-36841509

ABSTRACT

We report 4 cases of primary ciliary dyskinesia in unrelated indigenous North American children caused by identical, homozygous, likely pathogenic deletions in the DNAL1 gene. These shared DNAL1 deletions among dispersed indigenous populations suggest that primary ciliary dyskinesia accounts for more lung disease with bronchiectasis than previously recognized in indigenous North Americans.


Subject(s)
Bronchiectasis , Ciliary Motility Disorders , Child , Humans , Ciliary Motility Disorders/genetics , North America , Racial Groups
9.
J Mol Diagn ; 25(3): 156-167, 2023 03.
Article in English | MEDLINE | ID: mdl-36563937

ABSTRACT

Nearly 14% of disease-causing germline variants result from the disruption of mRNA splicing. Most (67%) DNA variants predicted in silico to disrupt splicing are classified as variants of uncertain significance. An analytic workflow-splice effect event resolver (SPEER)-was developed and validated to use mRNA sequencing to reveal significant deviations in splicing, pinpoint the DNA variants potentially involved, and measure the deleterious effects of the altered splicing on mRNA transcripts, providing evidence for assessing the pathogenicity of the variant. SPEER was used to analyze leukocyte RNA encoding 63 hereditary cancer syndrome-related genes in 20,317 patients. Among 3563 patients (17.5%) with at least one DNA variant predicted to affect splicing, 971 (4.8%) had altered splicing with a deleterious effect on the transcript, and 40 had altered splicing due to a DNA variant located outside of the reportable range of the test. Integrating SPEER results into the interpretation of variants allowed variants of uncertain significance to be reclassified as pathogenic or likely pathogenic in 0.4%, and as benign or likely benign in 5.9%, of the 20,317 patients. SPEER-based evidence was associated with a significantly greater effect on classifications of pathogenic or likely pathogenic and benign or likely benign in nonwhite versus non-Hispanic white patients, illustrating that evidence derived from mRNA splicing analysis may help to reduce ethnic/ancestral disparities in genetic testing.


Subject(s)
Genetic Testing , Neoplastic Syndromes, Hereditary , Humans , Genetic Testing/methods , RNA Splicing , RNA, Messenger/genetics , RNA , Neoplastic Syndromes, Hereditary/genetics
10.
Am J Med Genet A ; 188(9): 2642-2651, 2022 09.
Article in English | MEDLINE | ID: mdl-35570716

ABSTRACT

Guidelines for variant interpretation include criteria for incorporating phenotype evidence, but this evidence is inconsistently applied. Systematic approaches to using phenotype evidence are needed. We developed a method for curating disease phenotypes as highly or moderately predictive of variant pathogenicity based on the frequency of their association with disease-causing variants. To evaluate this method's accuracy, we retrospectively reviewed variants with clinical classifications that had evolved from uncertain to definitive in genes associated with curated predictive phenotypes. To demonstrate the clinical validity and utility of this approach, we compared variant classifications determined with and without predictive phenotype evidence. The curation method was accurate for 93%-98% of eligible variants. Among variants interpreted using highly predictive phenotype evidence, the percentage classified as pathogenic or likely pathogenic was 80%, compared with 46%-54% had the evidence not been used. Positive results among individuals harboring variants with highly predictive phenotype-guided interpretations would have been missed in 25%-37% of diagnostic tests and 39%-50% of carrier screens had other approaches to phenotype evidence been used. In summary, predictive phenotype evidence associated with specific curated genes can be systematically incorporated into variant interpretation to reduce uncertainty and increase the clinical utility of genetic testing.


Subject(s)
Genetic Testing , Genetic Variation , Genetic Testing/methods , Phenotype , Retrospective Studies
11.
Lancet Respir Med ; 10(5): 459-468, 2022 05.
Article in English | MEDLINE | ID: mdl-35051411

ABSTRACT

BACKGROUND: Primary ciliary dyskinesia (PCD) is a motile ciliopathy characterised by otosinopulmonary infections. Inheritance is commonly autosomal recessive, with extensive locus and allelic heterogeneity. The prevalence is uncertain. Most genetic studies have been done in North America or Europe. The aim of the study was to estimate the worldwide prevalence and ethnic heterogeneity of PCD. METHODS: We calculated the allele frequency of disease-causing variants in 29 PCD genes associated with autosomal recessive inheritance in 182 681 unique individuals to estimate the global prevalence of PCD in seven ethnicities (African or African American, Latino, Ashkenazi Jewish, Finnish, non-Finnish European, east Asian, and south Asian). We began by aggregating variants that had been interpreted by Invitae, San Francisco, CA, USA, a genetics laboratory with PCD expertise. We then determined the allele frequency of each variant (pathogenic, likely pathogenic, or variant of uncertain significance [VUS]) in the Genome Aggregation Database (gnomAD), a publicly available next-generation sequencing database that aggregates exome and genome sequencing information from a wide variety of large-scale projects and stratifies allele counts by ethnicity. Using the Hardy-Weinberg equilibrium equation, we were able to calculate a lower-end prevalence of PCD for each ethnicity by including only pathogenic and likely pathogenic variants; and upper-end prevalence by also including VUS. This approach was similar to previous work on Li-Fraumeni (TP53 variants) prevalence. We were not diagnosing PCD, but rather estimating prevalence based on known variants. FINDINGS: The overall minimum global prevalence of PCD is calculated to be at least one in 7554 individuals, although this is likely to be an underestimate because some variants currently classified as VUS might be disease-causing and some pathogenic variants might not be detected by our methods. In the overall cohort, Invitae data could be included for variants without gnomAD data for a primary ethnicity. When using only gnomAD allele frequencies to calculate prevalence in individual ethnicities, the estimated prevalence of PCD was lower in each ethnicity compared with the overall cohort. This is because the overall cohort includes additional data from the Invitae database such as copy number variants and other variants not present in gnomAD. With gnomAD we found the expected PCD frequency to be higher in individuals of African ancestry than in most other populations (excluding VUS: 1 in 9906 in African or African American vs 1 in 10 388 in non-Finnish European vs 1 in 14 606 in east Asian vs 1 in 16 309 in Latino; including VUS: 1 in 106 in African or African American vs 1 in 178 in non-Finnish European vs 1 in 196 in Latino vs 1 in 188 in east Asian). In addition, we found that the top 5 genes most commonly implicated in PCD differed across ethnic ancestries and contrasted commonly published findings. INTERPRETATION: PCD appears to be more common than has been recognised, particularly in individuals of African ancestry. We identified gene distributions that differ from those in previous European and North American studies. These results could have an international impact on case identification. Our analytic approach can be expanded as more PCD loci are identified, and could be adapted to study the prevalence of other inherited diseases. FUNDING: None.


Subject(s)
Ciliary Motility Disorders , Ethnicity , Databases, Genetic , Ethnicity/genetics , Gene Frequency , Humans , Prevalence
12.
Cancer ; 128(4): 675-684, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34724198

ABSTRACT

BACKGROUND: Germline variants in fumarate hydratase (FH) are associated with autosomal dominant (AD) hereditary leiomyomatosis and renal cell cancer (HLRCC) and autosomal recessive (AR) fumarase deficiency (FMRD). The prevalence and cancer penetrance across different FH variants remain unclear. METHODS: A database containing 120,061 records from individuals undergoing cancer germline testing was obtained. FH variants were classified into 3 categories: AD HLRCC variants, AR FMRD variants, and variants of unknown significance (VUSs). Individuals with variants from these categories were compared with those with negative genetic testing. RESULTS: FH variants were detected in 1.3% of individuals (AD HLRCC, 0.3%; AR FMRD, 0.4%; VUS, 0.6%). The rate of AD HLRCC variants discovered among reportedly asymptomatic individuals without a clear indication for HLRCC testing was 1 in 2668 (0.04%). In comparison with those with negative genetic testing, the renal cell carcinoma (RCC) prevalence was elevated with AD HLRCC variants (17.0% vs 4.5%; P < .01) and VUSs (6.4% vs 4.5%; P = .02) but not with AR FMRD variants. CONCLUSIONS: The prevalence of HLRCC discovered incidentally on germline testing is similar to recent population carrier estimates, and this suggests that this is a relatively common cancer syndrome. Compared with those with negative genetic testing, those with VUSs had an elevated risk of RCC, whereas those with AR FMRD variants did not.


Subject(s)
Carcinoma, Renal Cell , Fumarate Hydratase , Kidney Neoplasms , Leiomyomatosis , Neoplastic Syndromes, Hereditary , Skin Neoplasms , Uterine Neoplasms , Carcinoma, Renal Cell/epidemiology , Carcinoma, Renal Cell/genetics , Female , Fumarate Hydratase/genetics , Germ Cells , Germ-Line Mutation , Humans , Kidney Neoplasms/epidemiology , Kidney Neoplasms/genetics , Leiomyomatosis/epidemiology , Leiomyomatosis/genetics , Leiomyomatosis/pathology , Neoplastic Syndromes, Hereditary/epidemiology , Neoplastic Syndromes, Hereditary/genetics , Neoplastic Syndromes, Hereditary/pathology , Prevalence , Skin Neoplasms/epidemiology , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Uterine Neoplasms/epidemiology , Uterine Neoplasms/genetics , Uterine Neoplasms/pathology
13.
Hum Mutat ; 42(9): 1165-1172, 2021 09.
Article in English | MEDLINE | ID: mdl-34196078

ABSTRACT

Biallelic pathogenic variants in CFTR manifest as cystic fibrosis (CF) or other CFTR-related disorders (CFTR-RDs). The 5T allele, causing alternative splicing and reduced protein activity, is modulated by the adjacent TG repeat element, though previous data have been limited to small, selective cohorts. Here, the risk and spectrum of phenotypes associated with the CFTR TG-T5 haplotype variants (TG11T5, TG12T5, and TG13T5) in the absence of the p.Arg117His variant are evaluated. Individuals who received physician-ordered next-generation sequencing of CFTR were included. TG[11-13]T5 variant frequencies (biallelic or with another CF-causing variant [CFvar]) were calculated. Clinical information reported by the ordering provider or the individual was examined. Among 548,300 individuals, the T5 minor allele frequency (MAF) was 4.2% (TG repeat distribution: TG11 = 68.1%, TG12 = 29.5%, TG13 = 2.4%). When present with a CFvar, each TG[11-13]T5 variant was significantly enriched in individuals with a high suspicion of CF or CFTR-RD (personal/family history of CF/CFTR-RD) compared to those with a low suspicion for CF or CFTR-RD (hereditary cancer screening, CFTR not requisitioned). Compared to CFvar/CFvar individuals, those with TG[11-13]T5/CFvar generally had single-organ involvement, milder symptoms, variable expressivity, and reduced penetrance. These data improve our understanding of disease risks associated with TG[11-13]T5 variants and have important implications for reproductive genetic counseling.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Alleles , Biological Variation, Population , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Humans , Mutation , Phenotype
14.
Am J Hum Genet ; 108(4): 696-708, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33743207

ABSTRACT

The complexities of gene expression pose challenges for the clinical interpretation of splicing variants. To better understand splicing variants and their contribution to hereditary disease, we evaluated their prevalence, clinical classifications, and associations with diseases, inheritance, and functional characteristics in a 689,321-person clinical cohort and two large public datasets. In the clinical cohort, splicing variants represented 13% of all variants classified as pathogenic (P), likely pathogenic (LP), or variants of uncertain significance (VUSs). Most splicing variants were outside essential splice sites and were classified as VUSs. Among all individuals tested, 5.4% had a splicing VUS. If RNA analysis were to contribute supporting evidence to variant interpretation, we estimated that splicing VUSs would be reclassified in 1.7% of individuals in our cohort. This would result in a clinically significant result (i.e., P/LP) in 0.1% of individuals overall because most reclassifications would change VUSs to likely benign. In ClinVar, splicing VUSs were 4.8% of reported variants and could benefit from RNA analysis. In the Genome Aggregation Database (gnomAD), splicing variants comprised 9.4% of variants in protein-coding genes; most were rare, precluding unambiguous classification as benign. Splicing variants were depleted in genes associated with dominant inheritance and haploinsufficiency, although some genes had rare variants at essential splice sites or had common splicing variants that were most likely compatible with normal gene function. Overall, we describe the contribution of splicing variants to hereditary disease, the potential utility of RNA analysis for reclassifying splicing VUSs, and how natural variation may confound clinical interpretation of splicing variants.


Subject(s)
Alternative Splicing/genetics , Diagnostic Techniques and Procedures , Disease/genetics , RNA/analysis , Sequence Analysis, RNA , Uncertainty , Cohort Studies , Computer Simulation , High-Throughput Nucleotide Sequencing , Humans , RNA/genetics , RNA Splice Sites/genetics
15.
Bioinformatics ; 36(22-23): 5448-5455, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33300982

ABSTRACT

MOTIVATION: When rare missense variants are clinically interpreted as to their pathogenicity, most are classified as variants of uncertain significance (VUS). Although functional assays can provide strong evidence for variant classification, such results are generally unavailable. Multiplexed assays of variant effect can generate experimental 'variant effect maps' that score nearly all possible missense variants in selected protein targets for their impact on protein function. However, these efforts have not always prioritized proteins for which variant effect maps would have the greatest impact on clinical variant interpretation. RESULTS: Here, we mined databases of clinically interpreted variants and applied three strategies, each building on the previous, to prioritize genes for systematic functional testing of missense variation. The strategies ranked genes (i) by the number of unique missense VUS that had been reported to ClinVar; (ii) by movability- and reappearance-weighted impact scores, to give extra weight to reappearing, movable VUS and (iii) by difficulty-adjusted impact scores, to account for the more resource-intensive nature of generating variant effect maps for longer genes. Our results could be used to guide systematic functional testing of missense variation toward greater impact on clinical variant interpretation. AVAILABILITY AND IMPLEMENTATION: Source code available at: https://github.com/rothlab/mave-gene-prioritization. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Mutation, Missense , Proteins
16.
Genet Med ; 22(1): 240, 2020 01.
Article in English | MEDLINE | ID: mdl-31346256

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

17.
J Pediatr ; 215: 172-177.e2, 2019 12.
Article in English | MEDLINE | ID: mdl-31610925

ABSTRACT

OBJECTIVE: To evaluate whether cystic fibrosis transmembrane conductance regulator (CFTR) variants are more common among individuals tested for primary ciliary dyskinesia (PCD) compared with controls. STUDY DESIGN: Data were studied from 1021 individuals with commercial genetic testing for suspected PCD and 91 777 controls with genetic testing at the same company (Invitae) for symptoms/diseases unrelated to PCD or CFTR testing. The prevalence of CFTR variants was compared between controls and each of 3 groups of individuals tested for PCD (PCD-positive, -uncertain, and -negative molecular diagnosis). RESULTS: The prevalence of 1 pathogenic CFTR variant was similar among the individual groups. When combining the PCD-uncertain and PCR-negative molecular diagnosis groups, there was a higher prevalence of single pathogenic CFTR variants compared with controls (P = .03). Importantly, >1% of individuals who had negative genetic testing results for PCD had 2 pathogenic CFTR variants (8 of 723), and the incidence of cystic fibrosis (CF) (2 pathogenic variants) is roughly 1 in 3000 individuals of Caucasian ethnicity (∼0.03%). This incidence was also greater than that of 2 pathogenic CFTR variants in the control population (0.09% [84 of 91 777]; P = 9.60 × 10-16). These variants correlate with mild CFTR-related disease. CONCLUSIONS: Our results suggest that a single pathogenic CFTR variant is not likely to be a PCD-mimetic, but ongoing studies are needed in individuals in whom PCD is suspected and genetic testing results are uncertain or negative. Furthermore, CF may be misdiagnosed as PCD, reflecting phenotypic overlap. Among individuals evaluated for PCD, CF should be considered in the differential even in the CF newborn screening era.


Subject(s)
Ciliary Motility Disorders/etiology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/complications , Mutation , Ciliary Motility Disorders/diagnosis , Ciliary Motility Disorders/genetics , Cystic Fibrosis/diagnosis , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , DNA Mutational Analysis , Female , Follow-Up Studies , Genetic Testing/methods , Humans , Infant, Newborn , Male , Prevalence , Retrospective Studies
18.
Epilepsia Open ; 4(3): 397-408, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31440721

ABSTRACT

OBJECTIVE: Molecular genetic etiologies in epilepsy have become better understood in recent years, creating important opportunities for precision medicine. Building on these advances, detailed studies of the complexities and outcomes of genetic testing for epilepsy can provide useful insights that inform and refine diagnostic approaches and illuminate the potential for precision medicine in epilepsy. METHODS: We used a multi-gene next-generation sequencing (NGS) panel with simultaneous sequence and exonic copy number variant detection to investigate up to 183 epilepsy-related genes in 9769 individuals. Clinical variant interpretation was performed using a semi-quantitative scoring system based on existing professional practice guidelines. RESULTS: Molecular genetic testing provided a diagnosis in 14.9%-24.4% of individuals with epilepsy, depending on the NGS panel used. More than half of these diagnoses were in children younger than 5 years. Notably, the testing had possible precision medicine implications in 33% of individuals who received definitive diagnostic results. Only 30 genes provided 80% of molecular diagnoses. While most clinically significant findings were single-nucleotide variants, ~15% were other types that are often challenging to detect with traditional methods. In addition to clinically significant variants, there were many others that initially had uncertain significance; reclassification of 1612 such variants with parental testing or other evidence contributed to 18.5% of diagnostic results overall and 6.1% of results with precision medicine implications. SIGNIFICANCE: Using an NGS gene panel with key high-yield genes and robust analytic sensitivity as a first-tier test early in the diagnostic process, especially for children younger than 5 years, can possibly enable precision medicine approaches in a significant number of individuals with epilepsy.

19.
Mol Genet Genomic Med ; 7(8): e838, 2019 08.
Article in English | MEDLINE | ID: mdl-31270959

ABSTRACT

BACKGROUND: Primary ciliary dyskinesia (PCD) is a relatively rare autosomal recessive or X-linked disorder affecting ciliary function. In the set of causative genes, however, predominant pathogenic variants remain unknown in Asia. METHOD: A diagnosis of PCD was made following a modern comprehensive testing including genetic analysis; targeted resequencing for screening variants, and Sanger sequencing for determination of the breakpoints, with an additional review of databases to calculate the deletion frequency. A multiplexed PCR-based detection method has also been developed. RESULTS: We ascertained a 50-year-old Japanese male who had been diagnosed with diffuse panbronchiolitis (DPB), but refractory to macrolide therapy. We reevaluated the case and identified a large homozygous deletion spanning exons 1 to 4 of the DRC1 and determined the breakpoints (NM_145038.4: c.1-3952_540 + 1331del27748-bp). In the PCD cohort at the University of North Carolina, we found a female PCD patient of Korean descent harboring the same homozygous deletion. From the Invitae testing cohort, we extracted four carriers of the same deletion among 965 Asian individuals, whereas no deletion was found in the 23,951 non-Asians. CONCLUSION: We speculate that the DRC1 deletion is a recurrent or perhaps founder mutation in Asians. The simple PCR method could be a useful screening tool.


Subject(s)
Asian/genetics , Bronchiolitis/genetics , Ciliary Motility Disorders/genetics , Genetic Testing/methods , Haemophilus Infections/genetics , Microtubule-Associated Proteins/genetics , Base Sequence/genetics , Bronchiolitis/diagnosis , Child, Preschool , Cohort Studies , DNA Mutational Analysis/methods , Exons/genetics , Feasibility Studies , Female , Founder Effect , Haemophilus Infections/diagnosis , Heterozygote , Homozygote , Humans , Japan/ethnology , Male , Middle Aged , North Carolina , Polymerase Chain Reaction , Republic of Korea/ethnology , Sequence Deletion
20.
J Clin Immunol ; 39(2): 216-224, 2019 02.
Article in English | MEDLINE | ID: mdl-30911954

ABSTRACT

PURPOSE: Primary ciliary dyskinesia (PCD) is a rare disorder of the mucociliary clearance leading to recurrent upper and lower respiratory tract infections. PCD is difficult to clinically distinguish from other entities leading to recurrent oto-sino-pulmonary infections, including primary immunodeficiency (PID). Nasal nitric oxide (nNO) is a sensitive and specific diagnostic test for PCD, but it has not been thoroughly examined in PID. Past publications have suggested an overlap in nNO levels among subjects with PCD and PID. We sought to determine if nNO measurements among patients diagnosed with PID would fall significantly above the established PCD diagnostic cutoff value of 77 nL/min. METHODS: Children > 5 years old and adults with definitive PID or PCD diagnoses were recruited from outpatient subspecialty clinics. Participants underwent nNO testing by standardized protocol using a chemiluminescence analyzer and completed a questionnaire concerning their chronic oto-sino-pulmonary symptoms, including key clinical criteria specific to diagnosed PCD (neonatal respiratory distress at term birth, year-round cough or nasal congestion starting before 6 months of age, any organ laterality defect). RESULTS: Participants included 32 patients with PID, 27 patients with PCD, and 19 healthy controls. Median nNO was 228.9.1 nL/min in the PID group, 19.7 nL/min in the PCD group, and 269.4 in the healthy controls (p < 0.0001). Subjects with PCD were significantly more likely to report key clinical criteria specific to PCD, but approximately 25% of PID subjects also reported at least 1 of these key clinical criteria (mainly year-round cough or nasal congestion). CONCLUSIONS: While key clinical criteria associated with PCD often overlap with the symptoms reported in PID, nNO measurement by chemiluminescence technology allows for effective discrimination between PID and PCD.


Subject(s)
Ciliary Motility Disorders/diagnosis , Nitric Oxide/metabolism , Primary Immunodeficiency Diseases/diagnosis , Adolescent , Adult , Child , Ciliary Motility Disorders/metabolism , Diagnosis, Differential , Female , Humans , Male , Middle Aged , Nose , Primary Immunodeficiency Diseases/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...