Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Commun ; 12(1): 5307, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34489465

ABSTRACT

Prostate cancer is heterogeneous and patients would benefit from methods that stratify those who are likely to respond to systemic therapy. Here, we employ single-cell assays for transposase-accessible chromatin (ATAC) and RNA sequencing in models of early treatment response and resistance to enzalutamide. In doing so, we identify pre-existing and treatment-persistent cell subpopulations that possess regenerative potential when subjected to treatment. We find distinct chromatin landscapes associated with enzalutamide treatment and resistance that are linked to alternative transcriptional programs. Transcriptional profiles characteristic of persistent cells are able to stratify the treatment response of patients. Ultimately, we show that defining changes in chromatin and gene expression in single-cell populations from pre-clinical models can reveal as yet unrecognized molecular predictors of treatment response. This suggests that the application of single-cell methods with high analytical resolution in pre-clinical models may powerfully inform clinical decision-making.


Subject(s)
Chromatin/chemistry , DNA, Neoplasm/genetics , Drug Resistance, Neoplasm/genetics , Neoplasm Proteins/genetics , Prostatic Neoplasms/genetics , Transcriptome , Antineoplastic Agents/therapeutic use , Benzamides/therapeutic use , Cell Line, Tumor , Chromatin/metabolism , DNA, Neoplasm/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Male , Neoplasm Proteins/metabolism , Nitriles/therapeutic use , Phenylthiohydantoin/therapeutic use , Prostate/metabolism , Prostate/pathology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/mortality , Prostatic Neoplasms/pathology , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Survival Analysis , Exome Sequencing
2.
Ann Oncol ; 32(7): 896-905, 2021 07.
Article in English | MEDLINE | ID: mdl-33836265

ABSTRACT

BACKGROUND: Treatment of poor prognosis metastatic castration-resistant prostate cancer (mCRPC) includes taxane chemotherapy and androgen receptor pathway inhibitors (ARPI). We sought to determine optimal treatment in this setting. PATIENTS AND METHODS: This multicentre, randomised, open-label, phase II trial recruited patients with ARPI-naive mCRPC and poor prognosis features (presence of liver metastases, progression to mCRPC after <12 months of androgen deprivation therapy, or ≥4 of 6 clinical criteria). Patients were randomly assigned 1 : 1 to receive cabazitaxel plus prednisone (group A) or physician's choice of enzalutamide or abiraterone plus prednisone (group B) at standard doses. Patients could cross over at progression. The primary endpoint was clinical benefit rate for first-line treatment (defined as prostate-specific antigen response ≥50%, radiographic response, or stable disease ≥12 weeks). RESULTS: Ninety-five patients were accrued (median follow-up 21.9 months). First-line clinical benefit rate was greater in group A versus group B (80% versus 62%, P = 0.039). Overall survival was not different between groups A and B (median 37.0 versus 15.5 months, hazard ratio (HR) = 0.58, P = 0.073) nor was time to progression (median 5.3 versus 2.8 months, HR = 0.87, P = 0.52). The most common first-line treatment-related grade ≥3 adverse events were neutropenia (cabazitaxel 32% versus ARPI 0%), diarrhoea (9% versus 0%), infection (9% versus 0%), and fatigue (7% versus 5%). Baseline circulating tumour DNA (ctDNA) fraction above the cohort median and on-treatment ctDNA increase were associated with shorter time to progression (HR = 2.38, P < 0.001; HR = 4.03, P < 0.001). Patients with >30% ctDNA fraction at baseline had markedly shorter overall survival than those with undetectable ctDNA (HR = 38.22, P < 0.001). CONCLUSIONS: Cabazitaxel was associated with a higher clinical benefit rate in patients with ARPI-naive poor prognosis mCRPC. ctDNA abundance was prognostic independent of clinical features, and holds promise as a stratification biomarker.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Androgen Antagonists/therapeutic use , Androstenes , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Benzamides , Humans , Male , Nitriles , Phenylthiohydantoin , Prednisone/adverse effects , Prognosis , Prostatic Neoplasms, Castration-Resistant/drug therapy , Taxoids/therapeutic use , Treatment Outcome
3.
Nat Commun ; 11(1): 5070, 2020 10 08.
Article in English | MEDLINE | ID: mdl-33033260

ABSTRACT

The evolutionary progression from primary to metastatic prostate cancer is largely uncharted, and the implications for liquid biopsy are unexplored. We infer detailed reconstructions of tumor phylogenies in ten prostate cancer patients with fatal disease, and investigate them in conjunction with histopathology and tumor DNA extracted from blood and cerebrospinal fluid. Substantial evolution occurs within the prostate, resulting in branching into multiple spatially intermixed lineages. One dominant lineage emerges that initiates and drives systemic metastasis, where polyclonal seeding between sites is common. Routes to metastasis differ between patients, and likely genetic drivers of metastasis distinguish the metastatic lineage from the lineage that remains confined to the prostate within each patient. Body fluids capture features of the dominant lineage, and subclonal expansions that occur in the metastatic phase are non-uniformly represented. Cerebrospinal fluid analysis reveals lineages not detected in blood-borne DNA, suggesting possible clinical utility.


Subject(s)
Cell Lineage , Liquid Biopsy , Prostatic Neoplasms/pathology , Body Fluids/metabolism , Chromosomes, Human, Pair 8/genetics , Clone Cells , DNA Copy Number Variations/genetics , DNA, Neoplasm/genetics , Genetic Loci , Humans , Male , Middle Aged , Neoplasm Metastasis , Phylogeny
4.
Transl Oncol ; 11(5): 1160-1170, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30056367

ABSTRACT

Ovarian cancer has the highest mortality rate of all gynecologic malignancies. Identification of new biomarkers is highly needed due to its late diagnosis and high recurrence rate. The objective of this study was to identify mechanisms of therapy resistance and potential biomarkers by analyzing mRNA and protein expression from samples derived from patients with platinum-sensitive and -resistant ovarian cancer (total cohort n = 53). The data revealed new candidates for targeted therapies, such as GREB1 and ROR2. We showed that the development of platinum resistance correlated with upregulation of ROR2, whereas GREB1 was downregulated. Moreover, we demonstrated that high levels of ROR2 in platinum-resistant samples were associated with upregulation of Wnt5a, STAT3 and NF-kB levels, suggesting that a crosstalk between the non-canonical Wnt5a-ROR2 and STAT3/NF-kB signaling pathways. Upregulation of ROR2, Wnt5a, STAT3 and NF-kB was further detected in a platinum-resistant cell-line model. The results of the present study provided insight into molecular mechanisms associated with platinum resistance that could be further investigated to improve treatment strategies in this clinically challenging gynecological cancer.

5.
Oncogene ; 36(41): 5681-5694, 2017 10 12.
Article in English | MEDLINE | ID: mdl-28604746

ABSTRACT

In many cancer types, integrin-mediated signaling regulates proliferation, survival and invasion of tumorigenic cells. However, it is still unclear how integrins crosstalk with oncogenes to regulate tumorigenesis and metastasis. Here we show that oncogenic K-RasV12 upregulates α6-integrin expression in Madin-Darby canine kidney (MDCK) cells via activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK)/Fos-related antigen 1-signaling cascade. Activated α6-integrins promoted metastatic capacity and anoikis resistance, and led to perturbed growth of MDCK cysts. Transcriptomic analysis of K-RasV12-transformed MDCK cells also revealed robust downregulation of αV-class integrins. Re-expression of αV-integrin in K-RasV12-transformed MDCK cells synergistically upregulated the expression of Zinc finger E-box-binding homeobox 1 and Twist-related protein 1 and triggered epithelial-mesenchymal transition leading to induced cell motility and invasion. These results delineate the signaling cascades connecting oncogenic K-RasV12 with α6- and αV-integrin functions to modulate cancer cell survival and tumorigenesis, and reveal new possible strategies to target highly oncogenic K-RasV12 mutants.


Subject(s)
Epithelial-Mesenchymal Transition/genetics , Integrin alphaV/genetics , Neoplasms/genetics , Proto-Oncogene Proteins c-fos/genetics , Animals , Anoikis/genetics , Cell Proliferation/genetics , Dogs , Humans , Integrin alpha6/genetics , Madin Darby Canine Kidney Cells , Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics
6.
BMC Genomics ; 18(1): 68, 2017 01 11.
Article in English | MEDLINE | ID: mdl-28077088

ABSTRACT

BACKGROUND: Bone morphogenetic protein 4 (BMP4) plays an important role in cancer pathogenesis. In breast cancer, it reduces proliferation and increases migration in a cell line-dependent manner. To characterize the transcriptional mediators of these phenotypes, we performed RNA-seq and DNase-seq analyses after BMP4 treatment in MDA-MB-231 and T-47D breast cancer cells that respond to BMP4 with enhanced migration and decreased cell growth, respectively. RESULTS: The RNA-seq data revealed gene expression changes that were consistent with the in vitro phenotypes of the cell lines, particularly in MDA-MB-231, where migration-related processes were enriched. These results were confirmed when enrichment of BMP4-induced open chromatin regions was analyzed. Interestingly, the chromatin in transcription start sites of differentially expressed genes was already open in unstimulated cells, thus enabling rapid recruitment of transcription factors to the promoters as a response to stimulation. Further analysis and functional validation identified MBD2, CBFB, and HIF1A as downstream regulators of BMP4 signaling. Silencing of these transcription factors revealed that MBD2 was a consistent activator of target genes in both cell lines, CBFB an activator in cells with reduced proliferation phenotype, and HIF1A a repressor in cells with induced migration phenotype. CONCLUSIONS: Integrating RNA-seq and DNase-seq data showed that the phenotypic responses to BMP4 in breast cancer cell lines are reflected in transcriptomic and chromatin levels. We identified and experimentally validated downstream regulators of BMP4 signaling that relate to the different in vitro phenotypes and thus demonstrate that the downstream BMP4 response is regulated in a cell type-specific manner.


Subject(s)
Bone Morphogenetic Protein 4/metabolism , Breast Neoplasms/pathology , Deoxyribonucleases/metabolism , Phenotype , Sequence Analysis, RNA , Signal Transduction , Bone Morphogenetic Protein 4/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Chromatin/drug effects , Chromatin/metabolism , Humans , Signal Transduction/drug effects , Transcription, Genetic/drug effects
7.
Tumour Biol ; 37(9): 11991-11999, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27155850

ABSTRACT

Targeting Poly (ADP-ribose) polymerase 1 (PARP-1) involved in base excision repair (BER) has been shown to be a clinically effective treatment strategy in epithelial ovarian cancer (EOC) defective in homologous recombination (HR). The aim of this study was to evaluate fresh EOC tumor tissue in regard to PAR (Poly (ADP-ribose)) concentration as a surrogate marker for PARP activity and PARP protein expression in archival samples by immunohistochemistry (IHC). The prospective study cohort consisted of 57 fresh tumor samples derived from patients undergoing primary (n = 38) or interval debulking surgery (n = 19) for EOC and parallel archival paraffin-embedded tumor samples. PARP activity in fresh frozen tumor tissue was assessed by an enzymatic chemiluminescence assay and PARP protein expression in paraffin-embedded tumor tissue by IHC. No correlation was detected between PARP enzyme activity and PARP staining by IHC (p = 0.82). High PARP activity was associated with platinum sensitivity both in the entire study cohort (p = 0.022) and in the high-grade subgroup (p = 0.017). High PARP activity was also associated with improved progression-free survival (PFS) (32 vs 14 months, log-rank p = 0.009). However, PARP immunostaining pattern was not predictive of patient survival. In conclusion, we present a novel finding of high PARP activity associated with platinum sensitivity and improved PFS in EOC. There was no association between PARP IHC and pharmacodynamic assay, and the correlation of PARP IHC with clinico-pathological characteristics and patient survival was poor. Pharmacodynamic assay rather than IHC seems to reflect better biologically significant PARP.


Subject(s)
Enzyme-Linked Immunosorbent Assay/methods , Neoplasms, Glandular and Epithelial/enzymology , Ovarian Neoplasms/enzymology , Poly (ADP-Ribose) Polymerase-1/analysis , Aged , Carcinoma, Ovarian Epithelial , Female , Humans , Immunohistochemistry , Middle Aged , Neoplasms, Glandular and Epithelial/mortality , Neoplasms, Glandular and Epithelial/therapy , Ovarian Neoplasms/mortality , Ovarian Neoplasms/therapy , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Prospective Studies
8.
Oncogene ; 35(6): 738-47, 2016 Feb 11.
Article in English | MEDLINE | ID: mdl-25893308

ABSTRACT

Insulin-like growth factor binding protein 2 (IGFBP2) is a pleiotropic oncogenic protein that has both extracellular and intracellular functions. Despite a clear causal role in cancer development, the tumor-promoting mechanisms of IGFBP2 are poorly understood. The contributions of intracellular IGFBP2 to tumor development and progression are also unclear. Here we present evidence that both exogenous IGFBP2 treatment and cellular IGFBP2 overexpression lead to aberrant activation of epidermal growth factor receptor (EGFR), which subsequently activates signal transducer and activator of transcription factor 3 (STAT3) signaling. Furthermore, we demonstrate that IGFBP2 augments the nuclear accumulation of EGFR to potentiate STAT3 transactivation activities, via activation of the nuclear EGFR signaling pathway. Nuclear IGFBP2 directly influences the invasive and migratory capacities of human glioblastoma cells, providing a direct link between intracellular (and particularly nuclear) IGFBP2 and cancer hallmarks. These activities are also consistent with the strong association between IGFBP2 and STAT3-activated genes derived from The Cancer Genome Atlas database for human glioma. A high level of all three proteins (IGFBP2, EGFR and STAT3) was strongly correlated with poorer survival in an independent patient data set. These results identify a novel tumor-promoting function for IGFBP2 of activating EGFR/STAT3 signaling and facilitating EGFR accumulation in the nucleus, thereby deregulating EGFR signaling by two distinct mechanisms. As targeting EGFR in glioma has been relatively unsuccessful, this study suggests that IGFBP2 may be a novel therapeutic target.


Subject(s)
Cell Nucleus/metabolism , ErbB Receptors/metabolism , Insulin-Like Growth Factor Binding Protein 2/physiology , STAT3 Transcription Factor/metabolism , Active Transport, Cell Nucleus/genetics , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Cell Nucleus/genetics , Cell Transformation, Neoplastic/genetics , Cells, Cultured , Gene Expression Regulation, Neoplastic , Glioma/genetics , Glioma/metabolism , Glioma/mortality , Glioma/pathology , Humans , Insulin-Like Growth Factor Binding Protein 2/genetics , Protein Transport/genetics , Signal Transduction/genetics , Transcriptional Activation/genetics
10.
Cancer Lett ; 340(2): 192-200, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-23376639

ABSTRACT

Fusion genes are hybrid genes that combine parts of two or more original genes. They can form as a result of chromosomal rearrangements or abnormal transcription, and have been shown to act as drivers of malignant transformation and progression in many human cancers. The biological significance of fusion genes together with their specificity to cancer cells has made them into excellent targets for molecular therapy. Fusion genes are also used as diagnostic and prognostic markers to confirm cancer diagnosis and monitor response to molecular therapies. High-throughput sequencing has enabled the systematic discovery of fusion genes in a wide variety of cancer types. In this review, we describe the history of fusion genes in cancer and the ways in which fusion genes form and affect cellular function. We also describe computational methodologies for detecting fusion genes from high-throughput sequencing experiments, and the most common sources of error that lead to false discovery of fusion genes.


Subject(s)
Biomarkers, Tumor/genetics , Gene Fusion , Genome, Human , Genomics/methods , High-Throughput Nucleotide Sequencing , Neoplasms/genetics , Sequence Analysis, DNA , Animals , Computational Biology , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Genetic Testing , Humans , Neoplasms/diagnosis , Neoplasms/therapy , Phenotype , Precision Medicine , Predictive Value of Tests , Prognosis , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...