Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 2513, 2023 May 04.
Article in English | MEDLINE | ID: mdl-37142596

ABSTRACT

Kelvin-Helmholtz Instability is ubiquitous at Earth's magnetopause and plays an important role in plasma entry into the magnetosphere during northward interplanetary magnetic fields. Here, using one solar cycle of data from NASA THEMIS (Time History of Events and Macro scale Interactions during Substorms) and MMS (Magnetospheric Multiscale) missions, we found that KHI occurrence rates show seasonal and diurnal variations with the rate being high near the equinoxes and low near the solstices. The instability depends directly on the Earth's dipole tilt angle. The tilt toward or away from the Sun explains most of the seasonal and diurnal variations, while the tilt in the plane perpendicular to the Earth-Sun line explains the difference between the equinoxes. The results reveal the critical role of dipole tilt in modulating KHI across the magnetopause as a function of time, highlighting the importance of Sun-Earth geometry for solar wind-magnetosphere interaction and for space weather.

2.
Geophys Res Lett ; 48(19): e2021GL094002, 2021 Oct 16.
Article in English | MEDLINE | ID: mdl-35846947

ABSTRACT

The Kelvin-Helmholtz instability at the magnetospheric boundary plays a crucial role in solar wind-magnetosphere-ionosphere coupling, particle entry, and energization. The full extent of its impact has remained an open question due, in part, to global models without sufficient resolution to capture waves at higher latitudes. Using global magnetohydrodynamic simulations, we investigate an event when the Magnetospheric Multiscale (MMS) mission observed periodic low-frequency waves at the dawn-flank, high-latitude boundary layer. We show the layer to be unstable, even though the slow solar wind with the draped interplanetary magnetic field is seemingly unfavorable for wave generation. The simulated velocity shear at the boundary is thin ( ∼ 0.65 R E ) and requires commensurately high spatial resolution. These results, together with MMS observations, confirm for the first time in fully three-dimensional global geometry that KH waves can grow in this region and thus can be an important process for energetic particle acceleration, dynamics, and transport.

3.
J Geophys Res Space Phys ; 124(7): 5461-5481, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31598452

ABSTRACT

Extended periods of northward interplanetary magnetic field (IMF) lead to the formation of a cold, dense plasma sheet due to the entry of solar wind plasma into the magnetosphere. Identifying the paths that the solar wind takes to enter the magnetosphere, and their relative importance has remained elusive. Any theoretical model of entry must satisfy observational constraints, such as the overall entry rate and the dawn-dusk asymmetry observed in the cold, dense plasma sheet. We model, using a combination of global magnetohydrodynamic and test particle simulations, solar wind ion entry into the magnetosphere during northward IMF and compare entry facilitated by the Kelvin-Helmholtz instability to cusp reconnection. For Kelvin-Helmholtz entry we reproduce transport rates inferred from observation and kinetic modeling and find that intravortex reconnection creates buoyant flux tubes, which provides, through interchange instability, a mechanism of filling the central plasma sheet with cold magnetosheath plasma. For cusp entry we show that an intrinsic dawn-dusk asymmetry is created during entry that is the result of alignment of the westward ion drift with the dawnward electric field typically observed during northward IMF. We show that both entry mechanisms provide comparable mass but affect entering plasma differently. The flank-entering plasma is cold and dawn-dusk symmetric, whereas the cusp-entering plasma is accelerated and preferentially deflected toward dawn. The combined effect of these entry mechanisms results in a plasma sheet population that exhibits dawn-dusk asymmetry in the manner that is seen in nature: a two-component (hot and cold) dusk flank and hotter, broadly peaked dawn population.

SELECTION OF CITATIONS
SEARCH DETAIL
...