Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 20447, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37993603

ABSTRACT

[Formula: see text] is a promising material for developing high-capacity anodes for lithium-ion batteries (LIBs). However, microstructural changes of [Formula: see text] anodes at the particle and electrode level upon prolonged cycling remains unclear. In this work, the causes leading to capacity fade on [Formula: see text] anodes were investigated and simple strategies to attenuate anode degradation were explored. Nanostructured [Formula: see text] from diatomaceous earth was integrated into anodes containing different quantities of conductive carbon in the form of either a conductive additive or a nanometric coating layer. Galvanostatic cycling was conducted for 200 cycles and distinctive trends on capacity fade were identified. A thorough analysis of the anodes at selected cycle numbers was performed using a toolset of characterization techniques, including electrochemical impedance spectroscopy, FIB-SEM cross-sectional analysis and TEM inspections. Significant fragmentation of [Formula: see text] particles surface and formation of filigree structures upon cycling are reported for the first time. Morphological changes are accompanied by an increase in impedance and a loss of electroactive surface area. Carbon-coating is found to restrict particle fracture and to increase capacity retention to 66%, compared to 47% for uncoated samples after 200 cycles. Results provide valuable insights to improve cycling stability of [Formula: see text] anodes for next-generation LIBs.

2.
ACS Appl Mater Interfaces ; 15(36): 42439-42448, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37639468

ABSTRACT

Hexagonal manganites, RMnO3 (R = Sc, Y, Ho-Lu), are potential oxygen storage materials for air separation due to their reversible oxygen storage and release properties. Their outstanding ability to absorb and release oxygen at relatively low temperatures of 250-400 °C holds promise of saving energy compared to current industrial methods. Unfortunately, the low temperature of operation also implies slow kinetics of oxygen exchange in these materials, which would make them inefficient in applications such as chemical looping air separation. Here, we show that the oxidation kinetics of RMnO3 can be improved through Ti4+-doping as well as by increasing the rare earth cation size. The rate of oxygen absorption of nanocrystalline RMn1-xTixO3 (R = Ho, Dy; x = 0, 0.15) was investigated by thermogravimetric analysis, X-ray absorption near-edge structure, and high-temperature X-ray diffraction (HT-XRD) with in situ switching of atmosphere from N2 to O2. The kinetics of oxidation increases for larger R and even more with Ti4+ donor doping, as both induce expansion of the ab-plane, which reduces the electrostatic repulsion between oxygen in the lattice upon oxygen ion migration. Surface exchange rates and activation energies of oxidation were determined from changes in lattice parameters observed through HT-XRD upon in situ switching of atmosphere.

3.
ACS Omega ; 8(28): 24813-24830, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37483195

ABSTRACT

The effect of point defects and interactions with the substrate are shown by density functional theory calculations to be of significant importance for the structure and functional properties of hexagonal boron nitride (h-BN) films on highly ordered pyrolytic graphite (HOPG) and Ni(111) substrates. The structure, surface chemistry, and electronic properties are calculated for h-BN systems with selected intrinsic, oxygen, and carbon defects and with graphene hybrid structures. The electronic structure of a pristine monolayer of h-BN is dependent on the type of substrate, as h-BN is decoupled electronically from the HOPG surface and acts as bulk-like h-BN, whereas on a Ni(111) substrate, metallic-like behavior is predicted. These different film/substrate systems therefore show different reactivities and defect chemistries. The formation energies for substitutional defects are significantly lower than for intrinsic defects regardless of the substrate, and vacancies formed during film deposition are expected to be filled by either ambient oxygen or carbon from impurities. Significantly lower formation energies for intrinsic and oxygen and carbon substitutional defects were predicted for h-BN on Ni(111). In-plane h-BCN hybrid structures were predicted to be terminated by N-C bonding. Substitutional carbon on the boron site imposes n-type semiconductivity in h-BN, and the n-type character increases significantly for h-BN on HOPG. The h-BN film surface becomes electronically decoupled from the substrate when exceeding monolayer thickness, showing that the surface electronic properties and point defect chemistry for multilayer h-BN films should be comparable to those of a freestanding h-BN layer.

4.
Inorg Chem ; 61(39): 15540-15546, 2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36137177

ABSTRACT

The crystal structure of tetragonal tungsten bronzes, with the general formula A12A24C4B12B28O30, is flexible both from a chemical and structural viewpoint, resulting in a multitude of compositions. The A1 and A2 lattice sites, with different coordination environments, are usually regarded to be occupied by two different cations such as in Ba4Na2Nb10O30 with Na+ and Ba2+ occupying the A1 and A2 sites, respectively. Here, we report on a systematic study of the lattice site occupancy on the A1 and A2 sites in the series Ba4M2Nb10O30 (M = Na, K, and Rb). The three compounds were synthesized by a two-step solid-state method. The site occupancy on the A1 and A2 sites were investigated by a combination of Rietveld refinement of X-ray diffraction patterns and scanning transmission electron microscopy with simultaneous energy-dispersive spectroscopy. The two methods demonstrated consistent site occupancy of the cations on the A1 and A2 sites, rationalized by the variation in the size of the alkali cations. The cation order-disorder phenomenology in the tungsten bronzes reported is discussed using a thermodynamic model of O'Neill and Navrotsky, originally developed for cation interchange in spinels.

5.
Polymers (Basel) ; 13(9)2021 May 01.
Article in English | MEDLINE | ID: mdl-34062857

ABSTRACT

Epoxy nanocomposites have demonstrated promising properties for high-voltage insulation applications. An in situ approach to the synthesis of epoxy-SiO2 nanocomposites was employed, where surface-functionalized SiO2 (up to 5 wt.%) is synthesized directly in the epoxy. The dispersion of SiO2 was found to be affected by both the pH and the coupling agent used in the synthesis. Hierarchical clusters of SiO2 (10-60 nm) formed with free-space lengths of 53-105 nm (increasing with pH or SiO2 content), exhibiting both mass and surface-fractal structures. Reducing the amount of coupling agent resulted in an increase in the cluster size (~110 nm) and the free-space length (205 nm). At room temperature, nanocomposites prepared at pH 7 exhibited up to a 4% increase in the real relative permittivity with increasing SiO2 content, whereas those prepared at pH 11 showed up to a 5% decrease with increasing SiO2 content. Above the glass transition, all the materials exhibited low-frequency dispersion effect resulting in electrode polarization, which was amplified in the nanocomposites. Improvements in the dielectric properties were found to be not only dependent on the state of dispersion, but also the structure and morphology of the inorganic nanoparticles.

6.
ACS Omega ; 6(14): 9567-9576, 2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33869937

ABSTRACT

Carbonate formation is a prevailing challenge in synthesis of BaTiO3, especially through wet chemical synthesis routes. In this work, we report the phase evolution during thermal annealing of an aqueous BaTiO3 precursor solution, with a particular focus on the structures and role of intermediate phases forming prior to BaTiO3 nucleation. In situ infrared spectroscopy, in situ X-ray total scattering, and transmission electron microscopy were used to reveal the decomposition, pyrolysis, and crystallization reactions occurring during thermal processing. Our results show that the intermediate phases consist of nanosized calcite-like BaCO3 and BaTi4O9 phases and that the intimate mixing of these along with their metastability ensures complete decomposition to form BaTiO3 above 600 °C. We demonstrate that the stability of the intermediate phases is dependent on the processing atmosphere, where especially enhanced CO2 levels is detrimental for the formation of phase pure BaTiO3.

7.
Chemistry ; 26(42): 9348-9355, 2020 Jul 27.
Article in English | MEDLINE | ID: mdl-32125026

ABSTRACT

Controlling the shape and size of nanostructured materials has been a topic of interest in the field of material science for decades. In this work, the ferroelectric material Srx Ba1-x Nb2 O6 (x=0.32-0.82, SBN) was prepared by hydrothermal synthesis, and the morphology is controllably changed from cube-shaped to hollow-ended structures based on a fundamental understanding of the precursor chemistry. Synchrotron X-ray total scattering and PDF analysis was used to reveal the structure of the Nb-acid precursor, showing Lindqvist-like motifs. The changing growth mechanism, from layer-by-layer growth forming cubes to hopper-growth giving hollow-ended structures, is attributed to differences in supersaturation. Transmission electron microscopy revealed an inhomogeneous composition along the length of the hollow-ended particles, which is explained by preferential formation of the high entropy composition, SBN33, at the initial stages of particle nucleation and growth.

SELECTION OF CITATIONS
SEARCH DETAIL
...