Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Prev Res (Phila) ; 10(8): 459-466, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28611038

ABSTRACT

Sulindac is an NSAID that can provide effective chemoprevention for colorectal cancer. In this study, alternative dosing regimens of sulindac were evaluated for their chemoprevention effectiveness in the azoxymethane-treated A/J mouse model of colorectal cancer. High-resolution endoscopic optical coherence tomography was utilized to time-serially measure tumor number and tumor burden in the distal colon as the biological endpoints. Four treatment groups were studied: (i) daily for 20 weeks (sulindac-daily); (ii) for 2 weeks, then no sulindac for 2 weeks, cycle repeated 5 times (sulindac-2); (iii) for 10 weeks ("on"), then no sulindac for 10 weeks ("off"; sulindac-10); and (iv) no sulindac (sulindac-none). Sulindac-2 and sulindac-daily had statistically significantly lower final tumor counts and slopes (change in number of tumors per week) when compared with sulindac-none (P < 0.0001). All of the treatment groups had statistically significantly lower final tumor burdens and slopes when compared with sulindac-none (P < 0.001). There was a prolonged latency period in the sulindac-10 group, with no significant difference between the "off" portion of this treatment and sulindac-none. These results suggest that, although daily doses of sulindac provide the most optimal effects, intermittent doses of sulindac in a 50% duty cycle with an overall 4-week period (sulindac-2 model) can provide highly effective chemoprevention of colorectal cancer in this model. After cessation of sulindac treatment (sulindac-10 "off"), there is no evidence of either a persistent chemopreventive effect or a rebound effect. Cancer Prev Res; 10(8); 459-66. ©2017 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Chemoprevention/methods , Colorectal Neoplasms/chemically induced , Sulindac/pharmacology , Animals , Azoxymethane/toxicity , Carcinogens/toxicity , Disease Models, Animal , Female , Mice
2.
J Biomed Opt ; 21(5): 56005, 2016 05 01.
Article in English | MEDLINE | ID: mdl-27220626

ABSTRACT

With early detection, 5-year survival rates for ovarian cancer exceed 90%, yet no effective early screening method exists. Emerging consensus suggests over 50% of the most lethal form of the disease originates in the fallopian tube. Twenty-eight women undergoing oophorectomy or debulking surgery provided informed consent for the use of surgical discard tissue samples for multispectral fluorescence imaging. Using multiple ultraviolet and visible excitation wavelengths and emissions bands, 12 fluorescence and 6 reflectance images of 47 ovarian and 31 fallopian tube tissue samples were recorded. After imaging, each sample was fixed, sectioned, and stained for pathological evaluation. Univariate logistic regression showed cancerous tissue samples had significantly lower intensity than noncancerous tissue for 17 image types. The predictive power of multiple image types was evaluated using multivariate logistic regression (MLR) and quadratic discriminant analysis (QDA). Two MLR models each using two image types had receiver operating characteristic curves with area under the curve exceeding 0.9. QDA determined 56 image type combinations with perfect resubstituting using as few as five image types. Adaption of the system for future in vivo fallopian tube and ovary endoscopic imaging is possible, which may enable sensitive detection of ovarian cancer with no exogenous contrast agents.


Subject(s)
Early Detection of Cancer/methods , Fallopian Tubes/diagnostic imaging , Ovarian Neoplasms/diagnostic imaging , Ovary/diagnostic imaging , Female , Fluorescence , Humans
3.
J Biomed Opt ; 19(3): 36020, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24676382

ABSTRACT

Ovarian cancer is the most deadly gynecologic cancer, a fact which is attributable to poor early detection and survival once the disease has reached advanced stages. Intraoperative laparoscopic volume holographic imaging has the potential to provide simultaneous visualization of surface and subsurface structures in ovarian tissues for improved assessment of developing ovarian cancer. In this ex vivo ovarian tissue study, we assembled a benchtop volume holographic imaging system (VHIS) to characterize the microarchitecture of 78 normal and 40 abnormal tissue specimens derived from ovarian, fallopian tube, uterine, and peritoneal tissues, collected from 26 patients aged 22 to 73 undergoing bilateral salpingo-oophorectomy, hysterectomy with bilateral salpingo-oophorectomy, or abdominal cytoreductive surgery. All tissues were successfully imaged with the VHIS in both reflectance- and fluorescence-modes revealing morphological features which can be used to distinguish between normal, benign abnormalities, and cancerous tissues. We present the development and successful application of VHIS for imaging human ovarian tissue. Comparison of VHIS images with corresponding histopathology allowed for qualitatively distinguishing microstructural features unique to the studied tissue type and disease state. These results motivate the development of a laparoscopic VHIS for evaluating the surface and subsurface morphological alterations in ovarian cancer pathogenesis.


Subject(s)
Histocytochemistry/methods , Holography/methods , Image Processing, Computer-Assisted/methods , Optical Imaging/methods , Ovarian Neoplasms/pathology , Adult , Aged , Fallopian Tubes/anatomy & histology , Fallopian Tubes/pathology , Female , Humans , Middle Aged , Ovary/anatomy & histology , Ovary/pathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...