Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Radiol ; 4: 1320535, 2024.
Article in English | MEDLINE | ID: mdl-38333532

ABSTRACT

Electromagnetic tracking of instruments combined with preoperative images can supplement fluoroscopy for guiding endovascular aortic repair (EVAR). The aim of this study was to evaluate the in-vivo accuracy of a vessel-based registration algorithm for matching electromagnetically tracked positions of an endovascular instrument to preoperative computed tomography angiography. Five patients undergoing elective EVAR were included, and a clinically available semi-automatic 3D-3D registration algorithm, based on similarity measures computed over the entire image, was used for reference. Accuracy was reported as target registration error (TRE) evaluated in manually selected anatomic landmarks on bony structures, placed close to the volume-of-interest. The median TRE was 8.2 mm (range: 7.1 mm to 16.1 mm) for the vessel-based registration algorithm, compared to 2.2 mm (range: 1.8 mm to 3.7 mm) for the reference algorithm. This illustrates that registration based on intraoperative electromagnetic tracking is feasible, but the accuracy must be improved before clinical use.

2.
J Endovasc Ther ; : 15266028221123434, 2022 Sep 17.
Article in English | MEDLINE | ID: mdl-36121010

ABSTRACT

PURPOSE: Cannulation of visceral vessels is necessary during fenestrated and branched endovascular aortic repair. In an attempt to reduce the associated radiation and contrast dose, an electromagnetically (EM) trackable and manually steerable catheter has been developed. The purpose of this preclinical swine study was to evaluate the cannulation performance and compare the cannulation performance using either EM tracking or image fusion as navigation tools. MATERIALS AND METHODS: Both renal arteries, the superior mesenteric artery, and the celiac trunk were attempted to be cannulated using a 7F steerable, EM trackable catheter in 3 pigs. Seven operators attempted cannulation using first 3-dimensional (3D) image navigation with EM tracking and then conventional image fusion guidance. The rate of successful cannulation was recorded, as well as procedure time and radiation exposure. Due to the lack of an EM trackable guidewire, cannulations that required more than 1 attempt were attempted only with image fusion. The EM tracking position data were registered to preoperative 3D images using a vessel-based registration algorithm. RESULTS: A total of 72 cannulations were attempted with both methods, and 79% (57) were successful on the first attempt for both techniques. There was no difference in cannulation rate (p=1), and time-use was similar. Successful cannulation with image fusion was achieved in 97% of cases when multiple attempts were allowed. CONCLUSION: This study demonstrated the feasibility of a steerable and EM trackable catheter with 3D image navigation. Navigation performance with EM tracking was similar to image fusion, without statistically significant differences in cannulation rates and procedure times. Further studies are needed to demonstrate this utility in patients with aortic disease. CLINICAL IMPACT: Electromagnetic tracking in combination with a novel steerable catheter reduces radiation and contrast media doses while providing three-dimensional visualization and agile navigation during endovascular aortic procedures.

3.
Minim Invasive Ther Allied Technol ; 28(2): 127-133, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30810444

ABSTRACT

BACKGROUND: Combining electromagnetic tracking of instruments with preoperatively acquired images can provide detailed visualization for intraoperative guidance and reduce the need for fluoroscopy and contrast. In this study, we investigated the accuracy of a vessel-based registration method designed for matching preoperative image and electromagnetically tracked positions for endovascular therapy. MATERIAL AND METHODS: An open-source registration method was used to match the centerline extracted from computed tomography (CT) to electromagnetically tracked positions within a vascular phantom representing the abdominal aorta with bifurcations. The target registration error (TRE) was calculated for 11 fiducials distributed over the phantom. Median and intra-quartile range (IQR) for 30 registrations was reported. TRE < 5 mm was claimed sufficient for endovascular navigation, evaluated using the Wilcoxon signed-rank test. TRE was also compared to a 3D-3D registration method based on intraoperative cone-beam CT, using the Mann-Whitney U-test. RESULTS: The TRE was 3.75 (IQR: 3.48-3.99) mm for the centerline registration algorithm and 3.21 (IQR: 1.50-3.57) mm for the 3D-3D method (p < .001). For both methods, the TRE was significantly < 5 mm (p < .001). CONCLUSION: The centerline registration method was feasible, with an accuracy sufficient for navigation in endovascular therapy. The centerline method avoids additional image acquisition for registration purpose only.


Subject(s)
Aorta, Abdominal/diagnostic imaging , Aorta, Abdominal/surgery , Endovascular Procedures/methods , Imaging, Three-Dimensional/methods , Surgery, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Algorithms , Artificial Intelligence , Cone-Beam Computed Tomography , Electromagnetic Phenomena , Fluoroscopy , Humans , Phantoms, Imaging
4.
Clin Med Insights Cardiol ; 12: 1179546817751432, 2018.
Article in English | MEDLINE | ID: mdl-29326533

ABSTRACT

PURPOSE: A prototype steerable catheter was designed for endovascular procedures. This technical pilot study reports the initial experience using the catheter for cannulation of visceral arteries. TECHNIQUE: The 7F catheter was manually steerable with operator control handle for bending and rotation of the tip. The maximum bending angle was approximately 90° and full 360° rotation of the tip was supported. The study involved 1 pig with 4 designated target arteries: the left and right renal arteries, the superior mesenteric artery, and the celiac trunk. Fluoroscopy with 3-dimensional (3D) overlay showing the ostia from preoperative computed tomography angiography was used for image guidance. The cannulation was considered successful if the guidewire was placed well inside the target artery. In addition to evaluating cannulation success, procedure time and associated radiation doses were recorded. The procedure was performed twice with 2 different operators. CONCLUSIONS: Both operators successfully reached all 4 target arteries, demonstrating the feasibility of the steerable catheter for endovascular cannulation of visceral arteries. No contrast medium was used, and median radiation dose was 4.5 mGy per cannulation. An average of approximately 2 minutes was used per cannulation. This study motivates further testing in a more comprehensive study to evaluate reproducibility in several animals and with inclusion of more operators. Further development by integrating the new catheter tool in a navigation system is also an interesting next step, combining fine control of catheter tip movements and 3D image guidance without ionizing radiation.

SELECTION OF CITATIONS
SEARCH DETAIL
...