Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 8(18): 9341-9352, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30377505

ABSTRACT

The capacity of individuals to cope with stress, for example, from pathogen exposure, might decrease with increasing levels of sexual selection, although it remains unclear which sex should be more sensitive. Here, we measured the ability of each sex to maintain high reproductive success following challenges with either heat-killed bacteria or procedural control, across replicate populations of Drosophila melanogaster evolved under either high or low levels of sexual selection. Our experiment was run across four separate sampling blocks. We found an interaction between bacterial treatment, sexual selection treatment, and sampling block on female reproductive success. Specifically, and only in the fourth block, we observed that bacterial-challenged females that had evolved under high sexual selection, exhibited lower reproductive success than bacterial-challenged females that had evolved under low sexual selection. Furthermore, we could trace this block-specific effect to a reduction in viscosity of the ovipositioning substrate in the fourth block, in which females laid around 50% more eggs than in previous blocks. In contrast, patterns of male reproductive success were consistent across blocks. Males that evolved under high sexual selection exhibited higher reproductive success than their low-selection counterparts, regardless of whether they were subjected to a bacterial challenge or not. Our results are consistent with the prediction that heightened sexual selection will invoke male-specific evolutionary increases in reproductive fitness. Furthermore, our findings suggest that females might pay fitness costs when exposed to high levels of sexual selection, but that these costs may lie cryptic, and only be revealed under certain environmental contexts.

2.
BMC Evol Biol ; 11: 222, 2011 Jul 27.
Article in English | MEDLINE | ID: mdl-21791118

ABSTRACT

BACKGROUND: Biologists studying adaptation under sexual selection have spent considerable effort assessing the relative importance of two groups of models, which hinge on the idea that females gain indirect benefits via mate discrimination. These are the good genes and genetic compatibility models. Quantitative genetic studies have advanced our understanding of these models by enabling assessment of whether the genetic architectures underlying focal phenotypes are congruent with either model. In this context, good genes models require underlying additive genetic variance, while compatibility models require non-additive variance. Currently, we know very little about how the expression of genotypes comprised of distinct parental haplotypes, or how levels and types of genetic variance underlying key phenotypes, change across environments. Such knowledge is important, however, because genotype-environment interactions can have major implications on the potential for evolutionary responses to selection. RESULTS: We used a full diallel breeding design to screen for complex genotype-environment interactions, and genetic architectures underlying key morphological traits, across two thermal environments (the lab standard 27°C, and the cooler 23°C) in the Australian field cricket, Teleogryllus oceanicus. In males, complex three-way interactions between sire and dam parental haplotypes and the rearing environment accounted for up to 23 per cent of the scaled phenotypic variance in the traits we measured (body mass, pronotum width and testes mass), and each trait harboured significant additive genetic variance in the standard temperature (27°C) only. In females, these three-way interactions were less important, with interactions between the paternal haplotype and rearing environment accounting for about ten per cent of the phenotypic variance (in body mass, pronotum width and ovary mass). Of the female traits measured, only ovary mass for crickets reared at the cooler temperature (23°C), exhibited significant levels of additive genetic variance. CONCLUSIONS: Our results show that the genetics underlying phenotypic expression can be complex, context-dependent and different in each of the sexes. We discuss the implications of these results, particularly in terms of the evolutionary processes that hinge on good and compatible genes models.


Subject(s)
Biological Evolution , Ecosystem , Gryllidae/genetics , Selection, Genetic , Adaptation, Physiological , Animals , Australia , Environment , Female , Genotype , Gryllidae/physiology , Hot Temperature , Male , Phenotype
3.
J Anim Ecol ; 79(1): 266-74, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19840174

ABSTRACT

1. There are a number of models describing population structure, many of which have the capacity to incorporate spatial habitat effects. One such model is the source-sink model, that describes a system where some habitats have a natality that is higher than mortality (source) and others have a mortality that exceeds natality (sink). A source can be maintained in the absence of migration, whereas a sink will go extinct. 2. However, the interaction between population dynamics and habitat quality is complex, and concerns have been raised about the validity of published empirical studies addressing source-sink dynamics. In particular, some of these studies fail to provide data on survival, a significant component in disentangling a sink from a low quality source. Moreover, failing to account for a density-dependent increase in mortality, or decrease in fecundity, can result in a territory being falsely assigned as a sink, when in fact, this density-dependent suppression only decreases the population size to a lower level, hence indicating a 'pseudo-sink'. 3. In this study, we investigate a long-term data set for key components of territory-specific demography (mortality and reproduction) and their relationship to habitat characteristics in the territorial, group-living Siberian jay (Perisoreus infaustus). We also assess territory-specific population growth rates (r), to test whether spatial population dynamics are consistent with the ideas of source-sink dynamics. 4. Although average mortality did not differ between sexes, habitat-specific mortality did. Female mortality was higher in older forests, a pattern not observed in males. Male mortality only increased with an increasing amount of open areas. Moreover, reproductive success was higher further away from human settlement, indicating a strong effect of human-associated nest predators. 5. Averaged over all years, 76% of the territories were sources. These territories generally consisted of less open areas, and were located further away from human settlement. 6. The source-sink model provides a tool for modelling demography in distinct habitat patches of different quality, which can aid in identifying key habitats within the landscape, and thus, reduce the risk of implementing unsound management decisions.


Subject(s)
Ecosystem , Energy Metabolism/physiology , Passeriformes/physiology , Animals , Environment , Female , Male , Population Dynamics , Time Factors
4.
Evolution ; 64(5): 1257-66, 2010 May.
Article in English | MEDLINE | ID: mdl-20002162

ABSTRACT

Explanations for the evolution of polyandry often center on the idea that females garner genetic benefits for their offspring by mating multiply. Furthermore, postcopulatory processes are thought to be fundamental to enabling polyandrous females to screen for genetic quality. Much attention has focused on the potential for polyandrous females to accrue such benefits via a sexy- or good-sperm mechanism, whereby additive variation exists among males in sperm competitiveness. Likewise, attention has focused on an alternative model, in which offspring quality (in this context, the sperm competitiveness of sons) hinges on an interaction between parental haplotypes (genetic compatibility). Sperm competitiveness that is contingent on parental compatibility will exhibit nonadditive genetic variation. We tested these models in the Australian cricket, Teleogryllus oceanicus, using a design that allowed us to partition additive, nonadditive genetic, and parental variance for sperm competitiveness. We found an absence of additive and nonadditive genetic variance in this species, challenging the direct relevance of either model to the evolution of sperm competitiveness in particular, and polyandry in general. Instead, we found maternal effects that were possibly sex-linked or cytoplasmically linked. We also found effects of focal male age on sperm competitiveness, with small increments in age conferring more competitive sperm.


Subject(s)
Gryllidae/physiology , Spermatozoa/physiology , Animals , Female , Gryllidae/genetics , Male
5.
Conserv Biol ; 21(3): 767-74, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17531054

ABSTRACT

In the boreal forests of Fennoscandia, over 99% of forest area has been altered by forestry practices, which has created forest with age structures and stand characteristics that differ from primary forest stands. Although many researchers have investigated how forestry affects species abundance, few have assessed how forestry practices affect fitness correlates of species living in altered habitats, and this has negatively affected management efforts. We experimentally addressed the effect of standard forestry practices on fitness correlates of an open-nesting, long-lived bird species typical to boreal forests of Eurasia, the Siberian Jay (Perisoreus infaustus). We used a before-after comparison of reproductive data on the level of territories and found that standard forestry practices had a strong negative effect on the breeding success of jays. Both partial thinning of territories and partial clearcutting of territories reduced future breeding success by a factor of 0.35. Forestry practices reduced territory occupancy. Thus, over the 15 years of the study, productivity of the affected population declined over 50% as a result of territory abandonment and reduced breeding success. Results of previous studies on Siberian Jays suggest that the strong effect of forest thinning on fitness is explained by the fact that most common predators of nests and adults are visually oriented and thus thinning makes prey and nests more visible to predators. The consequences of thinning we observed are likely to apply to a wide range of species that rely on understory to provide visual protection from predators. Thus, our results are important for the development of effective conservation management protocols and for the refinement of thinning practices.


Subject(s)
Forestry/methods , Passeriformes , Animals , Breeding , Ecosystem , Passeriformes/physiology , Population Density , Sweden
6.
Proc Biol Sci ; 273(1596): 1881-6, 2006 Aug 07.
Article in English | MEDLINE | ID: mdl-16822747

ABSTRACT

Delayed dispersal is the key to family formation in most kin-societies. Previous explanations for the evolution of families have focused on dispersal constraints. Recently, an alternative explanation was proposed, emphasizing the benefits gained through philopatry. Empirical data have confirmed that parents provide their philopatric offspring with preferential treatment through enhanced access to food and predator protection. Yet it remains unclear to what extent such benefits translate into fitness benefits such as reduced mortality, which ultimately can select for the evolution of families. Here, we demonstrate that philopatric Siberian jay (Perisoreus infaustus) offspring have an odds ratio of being killed by predators 62% lower than offspring that dispersed promptly after independence to join groups of unrelated individuals (20.6% versus 33.3% winter mortality). Predation was the sole cause of mortality, killing 20 out of 73 juveniles fitted with radio tags. The higher survival rate among philopatric offspring was associated with parents providing nepotistic predator protection that was withheld from unrelated group members. Natal philopatry usually involves the suppression of personal reproduction. However, a lower mortality of philopatric offspring can overcome this cost and may thus select for the formation of families and set the scene for cooperative kin-societies.


Subject(s)
Behavior, Animal , Passeriformes/physiology , Social Behavior , Animals , Mortality , Predatory Behavior , Reproduction , Sexual Behavior, Animal
7.
Proc Biol Sci ; 273(1587): 701-6, 2006 Mar 22.
Article in English | MEDLINE | ID: mdl-16608689

ABSTRACT

Life-history theory predicts that an individual should reduce its reproductive efforts by laying a smaller clutch size when high risk of nest predation reduces the value of current reproduction. Evidence in favour of this 'nest predation hypothesis', however, is scarce and based largely on correlative analyses. Here, we manipulated perceived risk of nest predation in the Siberian jay Perisoreus infaustus using playback involving a mixture of calls by corvid nest predators in the vicinity of nest sites. In response to being exposed to this acoustic cue simulating increased risk of nest predation, the jays chose a nest site offering more protective covering and reduced clutch size. This is the first experimental demonstration of clutch size adjustment and nest site selection as a result of phenotypic plasticity in an open nesting passerine reflecting a facultative response to the perceived risk of nest predation.


Subject(s)
Fear/physiology , Nesting Behavior , Passeriformes/physiology , Animals , Clutch Size , Fear/psychology , Female , Linear Models , Predatory Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...