Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
J Nanobiotechnology ; 14: 17, 2016 Mar 09.
Article in English | MEDLINE | ID: mdl-26955956

ABSTRACT

This review is written with the purpose to review the current nanomedicine literature and provide an outlook on the developments in utilizing nanoscale drug constructs in treatment of solid cancers as well as in the potential treatment of multi-drug resistant cancers. No specific design principles for this review have been utilized apart from our active choice to avoid results only based on in vitro studies. Few drugs based on nanotechnology have progressed to clinical trials, since most are based only on in vitro experiments which do not give the necessary data for the research to progress towards pre-clinical studies. The area of nanomedicine has indeed spark much attention and holds promise for improved future therapeutics in the treatment of solid cancers. However, despite much investment few targeted therapeutics have successfully progressed to early clinical trials, indicating yet again that the human body is complicated and that much more understanding of the fundamentals of receptor interactions, physics of nanomedical constructs and their circulation in the body is indeed needed. We believe that nanomedical therapeutics can allow for more efficient treatments of resistant cancers, and may well be a cornerstone for RNA based therapeutics in the future given their general need for shielding from the harsh environment in the blood stream.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Resistance, Multiple/drug effects , Nanomedicine/methods , Neoplasms/drug therapy , Animals , Humans , Nanotechnology/methods
2.
J Am Chem Soc ; 138(3): 962-8, 2016 Jan 27.
Article in English | MEDLINE | ID: mdl-26710234

ABSTRACT

Many medical and chemical applications require target molecules to be delivered in a controlled manner at precise locations. Metal-organic frameworks (MOFs) have high porosity, large surface area, and tunable functionality and are promising carriers for such purposes. Current approaches for incorporating target molecules are based on multistep postfunctionalization. Here, we report a novel approach that combines MOF synthesis and molecule encapsulation in a one-pot process. We demonstrate that large drug and dye molecules can be encapsulated in zeolitic imidazolate framework (ZIF) crystals. The molecules are homogeneously distributed within the crystals, and their loadings can be tuned. We show that ZIF-8 crystals loaded with the anticancer drug doxorubicin (DOX) are efficient drug delivery vehicles in cancer therapy using pH-responsive release. Their efficacy on breast cancer cell lines is higher than that of free DOX. Our one-pot process opens new possibilities to construct multifunctional delivery systems for a wide range of applications.


Subject(s)
Antineoplastic Agents/administration & dosage , Doxorubicin/administration & dosage , Drug Carriers/chemical synthesis , Drug Delivery Systems , Organometallic Compounds/chemical synthesis , Zeolites/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Doxorubicin/chemistry , Doxorubicin/pharmacology , Drug Carriers/chemistry , Drug Screening Assays, Antitumor , Flow Cytometry , Humans , Hydrogen-Ion Concentration , Macrophages/drug effects , Microscopy, Confocal , Organometallic Compounds/chemistry , Particle Size , Structure-Activity Relationship , Surface Properties , Zeolites/chemistry
3.
J Mater Chem B ; 3(12): 2472-2486, 2015 Mar 28.
Article in English | MEDLINE | ID: mdl-26257912

ABSTRACT

Histamine functionalized block copolymers based on poly(allyl glycidyl ether)-b-poly(ethylene oxide) (PAGE-b-PEO) were prepared with different ratios of histamine and octyl or benzyl groups using UV-initiated thiol-ene click chemistry. At neutral pH, the histamine units are uncharged and hydrophobic, while in acidic environments, such as in the endosome, lysosomes, or extracellular sites of tumours, the histamine groups are positively charged and hydrophilic. pH responsible polymer drug delivery systems is a promising route to site specific delivery of drugs and offers the potential to avoid side effects of systemic treatment. Our detailed in vitro experiments of the efficacy of drug delivery and the intracellular localization characteristics of this library of NPs in 2D and 3D cultures of breast cancer revealed that the 50% histamine-modified polymer loaded with DOX exhibited rapid accumulation in the nucleus of free DOX within 2 h. Confocal studies showed enhanced mitochondrial localization and lysosomal escape when compared to controls. From these combined studies, it was shown that by accurately tuning the structure of the initial block copolymers, the resulting self-assembled NPs can be designed to exploit histamine as an endosomal escape trigger and the octyl/benzyl units give rise to a hydrophobic core resulting in highly efficacious drug delivery systems (DDS) with control over intracellular localization. Optimization and rational control of the intracellular localization of both DDS and the parent drug can give nanomedicines a substantial increase in efficacy and should be explored in future studies.

4.
Biomacromolecules ; 16(9): 2872-83, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26200248

ABSTRACT

Redox-sensitive hyperbranched dendritic-linear polymers (HBDLPs) were prepared and stabilized individually as unimolecular micelles with diameters in the range 25-40 nm. The high molecular weight (500-950 kDa), core-shell amphiphilic structures were synthesized through a combination of self-condensing vinyl copolymerization (SCVCP) and atom transfer radical polymerization (ATRP). Cleavable disulfide bonds were introduced, either in the backbone, or in pendant groups, of the hyperbranched core of the HBDLPs. By triggered reductive degradation, the HBDLPs showed up to a 7-fold decrease in molecular weight, and the extent of degradation was tuned by the amount of incorporated disulfides. The HBDLP with pendant disulfide-linked functionalities in the hyperbranched core was readily postfunctionalized with a hydrophobic dye, as a mimic for a drug. An instant release of the dye was observed as a response to a reductive environment similar to the one present intracellularly. The proposed strategy shows a facile route to highly stable unimolecular micelles, which attractively exhibit redox-responsive degradation and cargo release properties.


Subject(s)
Drug Carriers/chemistry , Drug Carriers/pharmacology , Micelles , Nanoparticles/chemistry , Female , Humans , MCF-7 Cells , Oxidation-Reduction
5.
Future Oncol ; 11(13): 1961-75, 2015.
Article in English | MEDLINE | ID: mdl-26161930

ABSTRACT

Clinical oncology is facing a paradigm shift. A new treatment philosophy is emerging and new targets are appearing that require new active agents. The medical use of nanotechnology - nanomedicine - holds several promising possibilities in the war against cancer. Some of these include: new formats for old drugs, that is, increasing efficacy while diminishing side effects; and new administration routes - that is, dermal, oral and pulmonary. In this overview, we describe some nanoparticles and their medical uses as well as highlight advantages of nanoparticles compared with conventional pharmaceuticals. We also point to some of the many technical challenges and potential risks with using nanotechnology for oncological applications.


Subject(s)
Drug Delivery Systems , Nanoparticles/therapeutic use , Nanotechnology , Neoplasms/therapy , Humans , Neoplasms/pathology
7.
Biomacromolecules ; 15(6): 2235-45, 2014 Jun 09.
Article in English | MEDLINE | ID: mdl-24784843

ABSTRACT

A library of amphiphilic, hyperbranched dendritic-linear polymers (HBDLPs) are successfully synthesized, and evaluated as potential unimolecular micelles. Hyperbranched macroinitiators (HBMI), extended with poly(ethylene glycol) methacrylate (P(OEGMA)), are afforded via a combination of self-condensing vinyl (co)polymerization (SCV(C)P) and atom transfer radical polymerization (ATRP), providing a versatile two-step synthetic route. The HBDLP architecture and chain lengths are varied, and the effect on the nanoparticle (NP) stability and properties are evaluated. The HBDLPs form predominantly stable and spherical NPs, and the NP dimensions could be tailored by the HBDLP characteristics. The NPs formed are of high molecular weight, and their stability varies with the properties of the corresponding HBDLP. Too small dendritic segment, or too low degree of PEGylation, results to some extent in NP aggregation, while higher molecular weight HBDLPs, with a high amount of hydrophilic segments, appears to form discrete unimolecular micelles. The versatility of the platform is further demonstrated by the convenience of forming a HBDLP with a more complex, linear copolymer extension instead of P(OEGMA).


Subject(s)
Dendrimers/chemistry , Drug Carriers/chemistry , Micelles , Animals , Cell Survival/drug effects , Cell Survival/physiology , Dendrimers/pharmacology , Drug Carriers/pharmacology , Humans , MCF-7 Cells , Mice
8.
Biomaterials ; 35(4): 1227-39, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24210875

ABSTRACT

Resistance to single or multiple chemotherapeutic drugs is a major complication in clinical oncology and is one of the most common treatment limitations in patients with reoccurring cancers. Nanoparticle (NP)-based drug delivery systems (DDS's) have been shown to overcome drug resistance in cancer cells mainly by avoiding the activation of efflux pumps in these cells. We demonstrate in this work that polyester-based hyperbranched dendritic-linear (HBDL)-based NPs carrying doxorubicin (Dox) can effectively overcome microsomal glutathione transferase 1 (MGST1)-mediated drug resistance in breast cancer cells. Our DDS was much more effective at considerably lower intracellular Dox concentrations (IC50 6.3 µm vs. 36.3 µm) and achieved significantly greater reductions in viability and induced higher degrees of apoptosis (31% vs. 14%) compared to the free drug in the resistant cells. Dox-loaded HBDL NPs were found to translocate across the membranes of resistant cells via active endocytic pathways and to be transported to lysosomes, mitochondria, and the endoplasmic reticulum. A significantly lower amount of Dox accumulated in these cytoplasmic compartments in resistant cells treated with free Dox. Moreover, we found that Dox-HBDL significantly decreased the expression of MGST1 and enhanced mitochondria-mediated apoptotic cell death compared to free Dox. Dox-HBDL also markedly activated the JNK pathway that contributes to the apoptosis of drug-resistant cells. These results suggest that HBDL NPs can modulate subcellular drug distribution by specific endocytic and trafficking pathways and that this results in drug delivery that alters enzyme levels and cellular signaling pathways and, most importantly, increases the induction of apoptosis. Our findings suggest that by exploiting the cell transport machinery we can optimize the polymeric vehicles for controlled drug release to overcome drug resistance combat drug resistance with much higher efficacy.


Subject(s)
Antibiotics, Antineoplastic/administration & dosage , Breast Neoplasms/drug therapy , Doxorubicin/administration & dosage , Drug Carriers/chemistry , Drug Resistance, Neoplasm , Glutathione Transferase/metabolism , Nanoparticles/chemistry , Antibiotics, Antineoplastic/pharmacokinetics , Antibiotics, Antineoplastic/pharmacology , Apoptosis/drug effects , Breast/drug effects , Breast/pathology , Breast Neoplasms/pathology , Cell Line, Tumor , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , Endocytosis , Female , Humans , Signal Transduction/drug effects
9.
Soft Matter ; 9(1): 82-89, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-25866546

ABSTRACT

Histamine functionalized poly(allyl glycidyl ether)-b-poly(ethylene glycol)-b-poly(allyl glycidyl ether) (PAGE-PEO-PAGE) triblock copolymers represent a new class of physically cross-linked, pH-responsive hydrogels with significant potential for biomedical applications. These telechelic triblock copolymers exhibited abrupt and reversible hydrogelation above pH 7.0 due to a hudrophilic/hydrophobic transition of the histamine units to form a network of hydrophobic domains bridged by a hydrophilic PEO matrix. These hydrophobic domains displayed improved ordering upon increasing pH and self-assembled into a body centered cubic lattice at pH 8.0, while at lower concentrations formed well-defined micelles. Significantly, all materials were found to be non-toxic when evaluated on three different cell lines and suggests a range of medical and biomedical applications.

11.
Biomacromolecules ; 13(11): 3814-22, 2012 Nov 12.
Article in English | MEDLINE | ID: mdl-23035906

ABSTRACT

Dendrimers and their less well-defined cousins, hyperbranched polymers, are widely investigated as scaffold materials in tissue engineering, as drug delivery agents, and in diagnostic imaging applications. Despite the large interest of using these unique materials as polymer-based nanoparticles in biomedical applications, a clear understanding of the cellular uptake and transport of these polyester-based nanoparticles is still lacking. The objective of this study is to evaluate the cellular uptake profiles and intracellular trafficking of polymer micelles built from the hyperbranched polyester Boltorn, fitted with poly(ethylene glycol) and fluorescent groups in MDA-MB468 breast cancer cells. Results show that the uptake of these nanoparticles correlated positively to both time and concentration, and that the uptake of the nanoparticles was energy dependent. These polyesterbased nanoparticles appear to translocate across cells via clathrin- and macropinocytosis-mediated endocytosis. Observations of the intracellular trafficking of the nanoparticles indicate that particles could be released from early endosomes after being internalized, and the particles exhibit perinuclear localization. The uptake behavior of the nanoparticles was further evaluated in a range of cell lines. These results allow the generation of the knowledge base required to design polyester-based nanocarriers that can be used efficiently and specifically for drug delivery applications and imaging applications.


Subject(s)
Breast Neoplasms/metabolism , Endocytosis , Micelles , Polymers/metabolism , Animals , Biological Transport , Cell Line, Tumor , Clathrin/metabolism , Dendrimers/metabolism , Drug Carriers , Female , Humans , Hydroxy Acids/chemistry , Macrophages , Mice , Nanoparticles , Particle Size , Polyethylene Glycols/metabolism , Propionates/chemistry , Tissue Engineering , Tissue Scaffolds
12.
ACS Nano ; 6(10): 8684-91, 2012 Oct 23.
Article in English | MEDLINE | ID: mdl-22950811

ABSTRACT

In the assembly of DNA nanostructures, the specificity of Watson-Crick base pairing is used to control matter at the nanoscale. Using this technology for drug delivery is a promising route toward the magic bullet concept, as it would allow the realization of complex assemblies that co-localize drugs, targeting ligands and other functionalities in one nanostructure. Anthracyclines' mechanism of action in cancer therapy is to intercalate DNA, and since DNA nanotechnology allows for such a high degree of customization, we hypothesized that this would allow us to tune the DNA nanostructures for optimal delivery of the anthracycline doxorubicin (Dox) to human breast cancer cells. We have tested two DNA origami nanostructures on three different breast cancer cell lines (MDA-MB-231, MDA-MB-468, and MCF-7). The different nanostructures were designed to exhibit varying degrees of global twist, leading to different amounts of relaxation in the DNA double-helix structure. By tuning the nanostructure design we are able to (i) tune the encapsulation efficiency and the release rate of the drug and (ii) increase the cytotoxicity and lower the intracellular elimination rate when compared to free Dox. Enhanced apoptosis induced by the delivery system in breast cancer cells was investigated using flow cytometry. The findings indicate that DNA origami nanostructures represent an efficient delivery system for Dox, resulting in high degrees of internalization and increased induction of programmed cell death in breast cancer cells. In addition, by designing the structures to exhibit different degrees of twist, we are able to rationally control and tailor the drug release kinetics.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/therapy , Delayed-Action Preparations/administration & dosage , Genetic Therapy/methods , Nanocapsules/administration & dosage , Nanocapsules/chemistry , Transfection/methods , Cell Line, Tumor , Delayed-Action Preparations/chemistry , Gene Silencing , Humans , Nanocapsules/ultrastructure
13.
J Control Release ; 161(2): 403-8, 2012 Jul 20.
Article in English | MEDLINE | ID: mdl-22306428

ABSTRACT

Nanotechnologies offer exciting opportunities for targeted drug delivery which is anticipated to increase the efficacy of the drug and reduce potential side-effects, through the reduction of the dose of the drug in bystander tissues and an increase of the drug at the desired target site. Nevertheless, understanding whether the nano-scale carriers themselves may exert adverse effects is of great importance. The small size may enable nanoparticles to negotiate various biological barriers in the body which could, in turn, give rise to unexpected toxicities. On the other hand, the potential of nanoparticles to cross barriers can also be exploited for drug delivery. Determining the fate of nanoparticles following their therapeutic or diagnostic application is critical: are nanoparticles excreted, or biodegraded, or do they accumulate, potentially leading to harmful long-term effects? The bio-corona of proteins or lipids on the surface of nanoparticles is a key parameter for the understanding of biological interactions of nanoparticles. In the present review, we discuss some of the major challenges related to safety of nanomedicines.


Subject(s)
Nanostructures/toxicity , Animals , Drug Delivery Systems , Humans , Nanomedicine
16.
Acc Chem Res ; 44(10): 969-78, 2011 Oct 18.
Article in English | MEDLINE | ID: mdl-21675721

ABSTRACT

Nanomedicine is a rapidly evolving field, for which polymer building blocks are proving useful for the construction of sophisticated devices that provide enhanced diagnostic imaging and treatment of disease, known as theranostics. These well-defined nanoscopic objects have high loading capacities, can protect embedded therapeutic cargo, and offer control over the conditions and rates of release. Theranostics also offer external surface area for the conjugation of ligands to impart stealth characteristics and/or direct their interactions with biological receptors and provide a framework for conjugation of imaging agents to track delivery to diseased site(s). The nanoscopic dimensions allow for extensive biological circulation. The incorporation of such multiple functions is complicated, requiring exquisite chemical control during production and rigorous characterization studies to confirm the compositions, structures, properties, and performance. We are particularly interested in the study of nanoscopic objects designed for treatment of lung infections and acute lung injury, urinary tract infections, and cancer. This Account highlights our work over several years to tune the assembly of unique nanostructures. We provide examples of how the composition, structure, dimensions, and morphology of theranostic devices can tune their performance as drug delivery agents for the treatment of infectious diseases and cancer. The evolution of nanostructured materials from relatively simple overall shapes and internal morphologies to those of increasing complexity is driving the development of synthetic methodologies for the preparation of increasingly complex nanomedicine devices. Our nanomedicine devices are derived from macromolecules that have well-defined compositions, structures, and topologies, which provide a framework for their programmed assembly into nanostructures with controlled sizes, shapes, and morphologies. The inclusion of functional units within selective compartments/domains allows us to create (multi)functional materials. We employ combinations of controlled radical and ring-opening polymerizations, chemical transformations, and supramolecular assembly to construct such materials as functional entities. The use of multifunctional monomers with selective polymerization chemistries affords regiochemically functionalized polymers. Further supramolecular assembly processes in water with further chemical transformations provide discrete nanoscopic objects within aqueous solutions. This approach echoes processes in nature, whereby small molecules (amino acids, nucleic acids, saccharides) are linked into polymers (proteins, DNA/RNA, polysaccharides, respectively) and then those polymers fold into three-dimensional conformations that can lead to nanoscopic functional entities.


Subject(s)
Diagnostic Imaging/methods , Nanomedicine/instrumentation , Nanostructures/chemistry , Therapeutics/methods , Animals , Humans , Nanostructures/therapeutic use
17.
ACS Appl Mater Interfaces ; 3(6): 2118-29, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21644572

ABSTRACT

A series of thiol-ene generated amphiphilic cross-linked networks was prepared by reaction of alkene-modified Boltorn polyesters (Boltorn-ene) with varying weight percent of 4-armed poly(ethylene glycol) (PEG) tetrathiol (0-25 wt%) and varying equivalents of pentaerythritol tetrakis(3-mercaptopropionate) (PETMP) (0-64 wt%). These materials were designed to present complex surface topographies and morphologies, with heterogeneity of surface composition and properties and robust mechanical properties, to serve as nontoxic antibiofouling coatings that are amenable to large-scale production for application in the marine environment. Therefore, a two-dimensional matrix of materials compositions was prepared to study the physical and mechanical properties, over which the compositions spanned from 0 to 25 wt% PEG tetrathiol and 0-64 wt% PETMP (the overall thiol/alkene (SH/ene) ratios ranged from 0.00 to 1.00 equiv), with both cross-linker weight percentages calculated with respect to the weight of Boltorn-ene. The Boltorn-ene components were prepared through the esterification of commercially available Boltorn H30 with 3-butenoic acid. The subsequent cross-linking of the Boltorn-PEG-PETMP films was monitored using IR spectroscopy, where it was found that near-complete consumption of both thiol and alkene groups occurred when the stoichiometry was ca. 48 wt% PETMP (0.75 equiv SH/ene, independent of PEG amount). The thermal properties of the films showed an increase in T(g) with an increase in 4-armed PEG-tetrathiol wt%, regardless of the PETMP concentration. Investigation of the bulk mechanical properties in dry and wet states found that the Young's modulus was the greatest at 48 wt% PETMP (0.75 equiv of SH/ene). The ultimate tensile strength increased when PETMP was constant and the PEG concentration was increased. The Young's modulus was slightly lower for wet films at constant PEG or constant PETMP amounts, than for the dry samples. The nanoscopic surface features were probed using atomic force microscopy (AFM), where it was observed that the surface of the amphiphilic films became increasingly rough with increasing PEG wt%. On the basis of the physicochemical data from the diverse sample matrix, a focused compositional profile was then investigated further to determine the antifouling performance of the cross-linked Boltorn-PEG-PETMP networks. For these studies, a low, constant PETMP concentration of 16 wt% was maintained with variation in the PEG wt% (0-35 wt%). Antifouling and fouling-release activities were tested against the marine alga Ulva. Spore settlement densities were low on these films, compared to that on standards of polydimethylsiloxane and glass.


Subject(s)
3-Mercaptopropionic Acid/analogs & derivatives , Biofouling/prevention & control , Polyesters/chemistry , Polyethylene Glycols/chemistry , Propylene Glycols/chemistry , 3-Mercaptopropionic Acid/chemistry , Microscopy, Atomic Force
18.
J Control Release ; 152(1): 37-48, 2011 May 30.
Article in English | MEDLINE | ID: mdl-21241750

ABSTRACT

Detailed studies were performed to probe the effects of the core and shell dimensions of amphiphilic, shell crosslinked, knedel-like polymer nanoparticles (SCKs) on the loading and release of doxorubicin (DOX), a widely-used chemotherapy agent, in aqueous buffer, as a function of the solution pH. Effects of the nanoparticle composition were held constant, by employing SCKs constructed from a single type of amphiphilic diblock copolymer, poly(acrylic acid)-b-polystyrene (PAA-b-PS). A series of four SCK nanoparticle samples, ranging in number-average hydrodynamic diameter from 14-30 nm, was prepared from four block copolymers having different relative block lengths and absolute degrees of polymerization. The ratios of acrylic acid to styrene block lengths ranged from 0.65 to 3.0, giving SCKs with ratios of shell to core volumes ranging from 0.44 to 2.1. Although the shell thicknesses were calculated to be similar (1.5-3.1 nm by transmission electron microscopy (TEM) calculations and 3.5-4.9 nm by small angle neutron scattering (SANS) analyses), two of the SCK nanoparticles had relatively large core diameters (19±2 and 20±2 nm by TEM; 17.4 and 15.3 nm by SANS), while two had similar, smaller core diameters (11±2 and 13±2 nm by TEM; 9.0 and 8.9 nm by SANS). The SCKs were capable of being loaded with 1500-9700 DOX molecules per each particle, with larger numbers of DOX molecules packaged within the larger core SCKs. Their shell-to-core volume ratio showed impact on the rates and extents of release of DOX, with the volume occupied by the poly(acrylic acid) shell relative to the volume occupied by the polystyrene core correlating inversely with the diffusion-based release of DOX. Given that the same amount of polymer was used to construct each SCK sample, SCKs having smaller cores and higher acrylic acid vs. styrene volume ratios were present at higher concentrations than were the larger core SCKs, and gave lower final extents of release., Higher final extents of release and faster rates of release were observed for all DOX-loaded particle samples at pH 5.0 vs. pH 7.4, respectively, ca. 60% vs. 40% at 60 h, suggesting promise for enhanced delivery within tumors and cells. By fitting the data to the Higuchi model, quantitative determination of the kinetics of release was made, giving rate constants ranging from 0.0431 to 0.0540 h⁻¹/² at pH 7.4 and 0.106 to 0.136 h⁻¹/² at pH 5.0. In comparison, the non-crosslinked polymer micelle analogs exhibited rate constants for release of DOX of 0.245 and 0.278 h⁻¹/² at pH 7.4 and 5.0, respectively. These studies point to future directions to craft sophisticated devices for controlled drug release.


Subject(s)
Antibiotics, Antineoplastic/administration & dosage , Doxorubicin/administration & dosage , Drug Delivery Systems , Nanoparticles/administration & dosage , Polymers/chemistry , Cross-Linking Reagents/chemistry , Doxorubicin/chemistry , Microscopy, Electron, Transmission , Polymers/administration & dosage , Solubility
19.
ACS Appl Mater Interfaces ; 2(3): 903-12, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20356297

ABSTRACT

Photocured thiol-ene hydrogel coatings based on poly(ethylene glycol) (PEG) were investigated for marine antifouling purposes. By varying the PEG length, vinylic end-group, and thiol cross-linker, a library of hydrogel coatings with different structural composition was efficiently accomplished, with or without ester linkages. The thiol-methacrylate and thiol-allyl systems were evaluated with respect to curing, degradation, as well as antifouling properties. Methacrylate-based systems exhibited homopolymerization, whereas allyl-based systems reacted more selectively through thiol-ene couplings reaction. The ester-free hydrogels elucidated higher hydrolytic stability whereas longer PEG chains accelerated the degradation process. The antifouling properties were evaluated by protein adsorption with Bovine serum albumin (BSA) and bioassays with the marine bacteria, Cobetia marina, and the marine diatom, Amphora coffeaeformis; in all tests, longer PEG lengths improved the antifouling properties.


Subject(s)
Crystallization/methods , Hydrogels/chemistry , Polyethylene Glycols/chemistry , Proteobacteria/drug effects , Sulfhydryl Compounds/chemistry , Water Microbiology , Water/chemistry , Cell Survival/drug effects , Feasibility Studies , Hardness , Materials Testing , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...