Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 22(37): 375502, 2010 Sep 22.
Article in English | MEDLINE | ID: mdl-21403198

ABSTRACT

We use first-principles density functional theory based calculations to determine the stability and properties of silicene, a graphene-like structure made from silicon, and explore the possibilities of modifying its structure and properties through incorporation of transition metal ions (M: Ti, Nb, Ta, Cr, Mo and W) in its lattice, forming MSi(2). While pure silicene is stable in a distorted honeycomb lattice structure obtained by opposite out-of-plane displacements of the two Si sub-lattices, its electronic structure still exhibits linear dispersion with the Dirac conical feature similar to graphene. We show that incorporation of transition metal ions in its lattice results in a rich set of properties with a clear dependence on the structural changes, and that CrSi(2) forms a two-dimensional magnet exhibiting a strong piezomagnetic coupling.


Subject(s)
Ions/chemistry , Magnetics/instrumentation , Materials Testing , Metals/chemistry , Models, Chemical , Silicon/chemistry , Transition Elements/chemistry , Electronics/methods , Electrons , Graphite/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...