Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 15: 279, 2014 Apr 12.
Article in English | MEDLINE | ID: mdl-24725334

ABSTRACT

BACKGROUND: Negative energy balance (NEB) is an altered metabolic state in high yielding cows that occurs during the first few weeks postpartum when energy demands for lactation and maintenance exceed the energy supply from dietary intake. NEB can, in turn, lead to metabolic disorders and to reduced fertility. Alterations in the expression of more than 700 hepatic genes have previously been reported in a study of NEB in postpartum dairy cows. miRNAs (microRNA) are known to mediate many alterations in gene expression post transcriptionally. To study the hepatic miRNA content of postpartum dairy cows, including their overall abundance and differential expression, in mild NEB (MNEB) and severe NEB (SNEB), short read RNA sequencing was carried out. To identify putative targets of differentially expressed miRNAs among differentially expressed hepatic genes reported previously in dairy cows in SNEB computational target identification was employed. RESULTS: Our results indicate that the dairy cow liver expresses 53 miRNAs at a lower threshold of 10 reads per million. Of these, 10 miRNAs accounted for greater than 95% of the miRNAome (miRNA content). Of the highly expressed miRNAs, miR-122 constitutes 75% followed by miR-192 and miR-3596. Five out of thirteen let-7 miRNA family members are also among the highly expressed miRNAs. miR-143, down-regulated in SNEB, was found to have 4 putative up-regulated gene targets associated with SNEB including LRP2 (low density lipoprotein receptor-related protein 2), involved in lipid metabolism and up-regulated in SNEB. CONCLUSIONS: This is the first liver miRNA-seq profiling study of moderate yielding dairy cows in the early postpartum period. Tissue specific miR-122 and liver enriched miR-192 are two of the most abundant miRNAs in the postpartum dairy cow liver. miR-143 is significantly down-regulated in SNEB and putative targets of miRNA-143 which are up-regulated in SNEB, include a gene involved in lipid metabolism.


Subject(s)
Energy Metabolism/genetics , Liver/metabolism , MicroRNAs/genetics , Postpartum Period/genetics , Postpartum Period/metabolism , Transcriptome , Animals , Cattle , Female , Gene Expression Profiling , Gene Expression Regulation , RNA, Messenger/genetics , Reproducibility of Results
2.
Reprod Fertil Dev ; 26(4): 599-608, 2014.
Article in English | MEDLINE | ID: mdl-23607981

ABSTRACT

The aims of the present study were to assess several components of the insulin-like growth factor (IGF) system in bovine uterine flushings across different days of the oestrous cycle and to examine the relationship between the IGF system and systemic progesterone concentrations. Uterine flushings and plasma were collected from cows on Days 3, 7, 11 and 15 of the oestrous cycle. The IGF-1 concentration was more than 5-fold higher in the uterus compared with plasma on Days 7 and 11 of the cycle, with values similar on Days 3 and 15. Similarly, uterine concentrations of IGF-binding protein (IGFBP)-2 and IGFBP-3 were up to 10- and 4-fold higher than in plasma, respectively, suggesting synthesis and/or transportation of the IGFBPs into the uterus. In addition, concentrations of IGFBP-2 and IGFBP-3 were higher in the uterine horns, ipsilateral to the corpus luteum, on Day 15. This difference could indicate a local controlling mechanism with progesterone possibly playing a role in regulating the concentration of IGFBPs between the uterine horns. There was no significant relationship between systemic progesterone concentrations and IGFBP concentrations on Day 7 of the oestrous cycle. The present study shows that uterine concentrations of IGFBPs are cycle stage specific and also suggests IGF-dependent and -independent functions for IGFBPs during a time of major change in the developing embryo.


Subject(s)
Estrous Cycle/metabolism , Insulin-Like Growth Factor Binding Proteins/metabolism , Insulin-Like Growth Factor I/metabolism , Uterus/metabolism , Animals , Cattle , Estrous Cycle/blood , Female , Insulin-Like Growth Factor Binding Protein 2/metabolism , Insulin-Like Growth Factor Binding Protein 3/metabolism , Insulin-Like Growth Factor Binding Proteins/blood , Progesterone/metabolism , Time Factors
3.
Proteomics ; 13(22): 3333-53, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24115321

ABSTRACT

Early embryonic loss accounts for over 70% of total embryonic and foetal loss in dairy cattle. Early embryonic development and survival is associated with the concentration of systemic progesterone. To determine if the uterine proteome is influenced by stage of cycle or systemic progesterone concentrations, uterine flushings were collected from the ipsi- and contralateral uterine horns of beef heifers on Days 7 (n = 10) and 15 (n = 10) of the oestrous cycle. Animals were separated into low or high progesterone groups based on plasma progesterone concentrations on Day 5 of the cycle. Samples were albumin depleted before iTRAQ R labeling and subsequent strong cation exchange-LC-MS/MS analyses. A total of 20 proteins were up to 5.9-fold higher (p<0.05) and 20 were up to 2.3-fold lower on Day 15 compared toDay 7. In addition, the expression of a number of proteins on Day 7 and/or 15 of the cycle was correlated with progesterone concentrations during Days 3­7 or the rate of change in progesterone between Days 3 and 7. This study highlights the dynamic changes occurring in the microenvironment surrounding the embryo during this period. The findings here also support the hypothesis that progesterone supports embryonic development by altering the maternal uterine environment.


Subject(s)
Estrous Cycle/metabolism , Progesterone/blood , Proteome/analysis , Uterus/chemistry , Animals , Cattle , Female , Gene Expression , Linear Models , Protein Interaction Maps , Uterus/metabolism
4.
Proteomics ; 12(12): 2014-23, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22623423

ABSTRACT

Early embryo loss is a key factor affecting fertility in dairy and beef herds. Prior to implantation, the bovine embryo spends around 16 days free-floating in the uterine environment and is dependent on the composition of uterine fluid for normal growth and development. However, there is a lack of information regarding the protein composition of the bovine uterus and how it relates to plasma. In this study, uterine flushings (UF) (n = 6) and blood plasma (n = 4) were collected from beef heifers on day 7 of the oestrous cycle, albumin depleted and compared using iTRAQ proteomics. A total of 35 proteins were higher and 18 were lower in UF including metabolic enzymes, proteins with anti-oxidant activity and those involved in modulation of the immune response. This study confirms the dynamic nature of the bovine uterine proteome and that it differs from plasma. Factors affecting the uterine proteome and how it impacts on embryo survival warrant further study.


Subject(s)
Blood Proteins/analysis , Proteome/analysis , Uterus/chemistry , Animals , Blood Proteins/chemistry , Cattle , Estrus/blood , Estrus/metabolism , Female , Isotope Labeling , Proteome/chemistry , Proteomics
5.
Proteomics ; 11(11): 2329-35, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21538883

ABSTRACT

Current MS-based proteomics has facilitated the identification of large numbers of proteins from complex mixtures. The bovine plasma proteome has the potential to provide a wealth of information concerning the biological state of an animal. However, during MS-based experiments, higher abundance proteins such as albumin and immunoglobulin G (IgG) can hinder the identification of potentially important proteins that are present in much lower abundance. While a variety of readily available technologies exist for the depletion of multiple high-abundance proteins from human, mouse and rat samples, there are few available for bovine. In this study, we report the depletion of >97% of albumin and >92% of IgG from bovine plasma.


Subject(s)
Cattle/blood , Immunoglobulin G/isolation & purification , Immunosorbent Techniques , Proteomics/methods , Serum Albumin, Bovine/isolation & purification , Animals , Antibodies, Immobilized/metabolism , Electrophoresis, Gel, Two-Dimensional , Female , Immunoglobulin G/analysis , Immunoglobulin G/metabolism , Reproducibility of Results , Serum Albumin, Bovine/analysis
6.
Reprod Fertil Dev ; 22(8): 1198-205, 2010.
Article in English | MEDLINE | ID: mdl-20883645

ABSTRACT

In the dairy cow, low systemic concentrations of progesterone are known to be a major factor associated with early embryo loss. Endometrial expression of the gene encoding retinol-binding protein (RBP) is sensitive to small changes in progesterone on day 7 of the oestrous cycle. The objectives of the present study were to measure RBP concentrations in bovine uterine flushings and plasma across different days of the oestrous cycle and to examine the relationship between uterine RBP and systemic concentrations of progesterone. Uterine flushings and plasma were collected from cows on days 3, 7, 11 and 15 of the oestrous cycle. Uterine RBP concentrations were five- to 15-fold higher (P < 0.001) on day 15 compared with the other days and twofold higher (P < 0.001) in the uterine horn ipsilateral to the corpus luteum on day 15. RBP concentrations were similar in flushings and plasma across days 3-11; however, day 15 RBP concentrations were six- to 15-fold higher (P < 0.001) in uterine flushings. No significant relationship was found between the concentration of systemic progesterone and RBP concentrations on day 7. Overall, the results of the present study indicate a local controlling mechanism operating at the level of the endometrium to regulate RBP secretion, most likely progesterone.


Subject(s)
Estrus/metabolism , Progesterone/blood , Retinol-Binding Proteins, Cellular/metabolism , Retinol-Binding Proteins, Plasma/metabolism , Uterus/metabolism , Vitamin A/metabolism , beta Carotene/metabolism , Animals , Cattle , Estrus/blood , Female , Therapeutic Irrigation , Time Factors , Vitamin A/blood , beta Carotene/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...