Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IUCrJ ; 9(Pt 5): 538-543, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36071805

ABSTRACT

Recent advances in X-ray instrumentation and sample injection systems have enabled serial crystallography of protein nanocrystals and the rapid structural analysis of dynamic processes. However, this progress has been restricted to large-scale X-ray free-electron laser (XFEL) and synchrotron facilities, which are often oversubscribed and have long waiting times. Here, we explore the potential of state-of-the-art laboratory X-ray systems to perform comparable analyses when coupled to micro- and millifluidic sample environments. Our results demonstrate that commercial small- and wide-angle X-ray scattering (SAXS/WAXS) instruments and X-ray diffractometers are ready to access samples and timescales (≳5 ms) relevant to many processes in materials science including the preparation of pharmaceuticals, nanoparticles and functional crystalline materials. Tests of different X-ray instruments highlighted the importance of the optical configuration and revealed that serial WAXS/XRD analysis of the investigated samples was only possible with the higher flux of a microfocus setup. We expect that these results will also stimulate similar developments for structural biology.

2.
Angew Chem Int Ed Engl ; 60(23): 12955-12963, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33725372

ABSTRACT

We report that polymerization-induced self-assembly (PISA) can be used to prepare lyotropic phases comprising diblock copolymer nano-objects in non-polar media. RAFT dispersion polymerization of benzyl methacrylate (BzMA) at 90 °C using a trithiocarbonate-capped hydrogenated polybutadiene (PhBD) steric stabilizer block in n-dodecane produces either spheres or worms that exhibit long-range order at 40 % w/w solids. NMR studies enable calculation of instantaneous copolymer compositions for each phase during the BzMA polymerization. As the PBzMA chains grow longer when targeting PhBD80 -PBzMA40 , time-resolved small-angle X-ray scattering reveals intermediate body-centered cubic (BCC) and hexagonally close-packed (HCP) sphere phases prior to formation of a final hexagonal cylinder phase (HEX). The HEX phase is lost on serial dilution and the aligned cylinders eventually form disordered flexible worms. The HEX phase undergoes an order-disorder transition on heating to 150 °C and a pure HCP phase forms on cooling to 20 °C.

3.
Chem Sci ; 11(2): 396-402, 2020 Jan 14.
Article in English | MEDLINE | ID: mdl-32153754

ABSTRACT

It is well-recognized that block copolymer self-assembly in solution typically produces spheres, worms or vesicles, with the relative volume fraction of each block dictating the copolymer morphology. Stimulus-responsive diblock copolymers that can undergo either sphere/worm or vesicle/worm transitions are also well-documented. Herein we report a new amphiphilic diblock copolymer that can form spheres, worms, vesicles or lamellae in aqueous solution. Such self-assembly behavior is unprecedented for a single diblock copolymer of fixed composition yet is achieved simply by raising the solution temperature from 1 °C (spheres) to 25 °C (worms) to 50 °C (vesicles) to 70 °C (lamellae). Heating increases the degree of hydration (and hence the effective volume fraction) of the core-forming block, with this parameter being solely responsible for driving the sphere-to-worm, worm-to-vesicle and vesicle-to-lamellae transitions. The first two transitions exhibit excellent reversibility but the vesicle-to-lamellae transition exhibits hysteresis on cooling. This new thermoresponsive diblock copolymer provides a useful model for studying such morphological transitions and is likely to be of significant interest for theoretical studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...