Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Robot ; 5(1): 99-108, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29412085

ABSTRACT

We introduce the use of buckled foam for soft pneumatic actuators. A moderate amount of residual compressive strain within elastomer foam increases the applied force ∼1.4 × or stroke ∼2 × compared with actuators without residual strain. The origin of these improved characteristics is explained analytically. These actuators are applied in a direct cardiac compression (DCC) device design, a type of implanted mechanical circulatory support that avoids direct blood contact, mitigating risks of clot formation and stroke. This article describes a first step toward a pneumatically powered, patient-specific DCC design by employing elastomer foam as the mechanism for cardiac compression. To form the device, a mold of a patient's heart was obtained by 3D printing a digitized X-ray computed tomography or magnetic resonance imaging scan into a solid model. From this model, a soft, robotic foam DCC device was molded. The DCC device is compliant and uses compressed air to inflate foam chambers that in turn apply compression to the exterior of a heart. The device is demonstrated on a porcine heart and is capable of assisting heart pumping at physiologically relevant durations (∼200 ms for systole and ∼400 ms for diastole) and stroke volumes (∼70 mL). Although further development is necessary to produce a fully implantable device, the material and processing insights presented here are essential to the implementation of a foam-based, patient-specific DCC design.


Subject(s)
Heart-Assist Devices , Robotics , Equipment Design , Humans , Stroke Volume
2.
Sci Robot ; 3(23)2018 10 17.
Article in English | MEDLINE | ID: mdl-33141733

ABSTRACT

The force, speed, dexterity, and compact size required of prosthetic hands present extreme design challenges for engineers. Current prosthetics rely on high-quality motors to achieve adequate precision, force, and speed in a small enough form factor with the trade-off of high cost. We present a simple, compact, and cost-effective continuously variable transmission produced via projection stereolithography. Our transmission, which we call an elastomeric passive transmission (EPT), is a polyurethane composite cylinder that autonomously adjusts its radius based on the tension in a wire spooled around it. We integrated six of these EPTs into a three-dimensionally printed soft prosthetic hand with six active degrees of freedom. Our EPTs provided the prosthetic hand with about three times increase in grip force without compromising flexion speed. This increased performance leads to finger closing speeds of ~0.5 seconds (average radial velocity, ~180 degrees second-1) and maximum fingertip forces of ~32 newtons per finger.

3.
Adv Mater ; 27(41): 6334-40, 2015 Nov 04.
Article in English | MEDLINE | ID: mdl-26384472

ABSTRACT

Open-celled, elastomeric foams allow the simple design of fully 3D pneumatic soft machines using common forming techniques. This is demonstrated through the fabrication of simple actuators and an entirely soft, functional fluid pump formed in the shape of the human heart. The device pumps at physiologically relevant frequencies and pressures and attains a flow rate higher than all previously reported soft pumps.


Subject(s)
Robotics , Dimethylpolysiloxanes/chemistry , Elasticity , Porosity , Pressure
SELECTION OF CITATIONS
SEARCH DETAIL
...