Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 615
Filter
1.
Microrna ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38982917

ABSTRACT

BACKGROUND: After mild traumatic brain injury (mTBI), some patients experience symptoms that persist for weeks to months. Recovery from mTBI is primarily assessed using selfreported symptom questionnaires. Blood biomarkers, including microRNA species, have shown promise to assist diagnosis of mTBI, however, little is known about how blood microRNA measures might predict symptom recovery. OBJECTIVE: The aim of this study was to investigate the variances in plasma microRNAs on the day of injury between individuals with mTBI who report post-concussive symptoms at the 28- day mark and those who do not. METHODS: Patients who presented to an adult, tertiary referral hospital emergency department on the day of the injury and were diagnosed with isolated mTBI (n=35) were followed up for 28 days. Venous blood samples were collected and symptom severity was assessed using the Rivermead Post-Concussion Symptom Questionnaire (RPQ) on the day of injury and at 28 days. Patients who reported ongoing symptoms of total RPQ score ≥10 or at least one symptom severity ≥2, were compared to those with lesser symptom severity or symptom resolution. RESULTS: There were 9 (25.7%; 95%CI: 12.5-43.3) patients who reported persistent symptoms. Day of injury plasma miR-223-3p levels were significantly higher in individuals with ongoing symptoms compared to those without, however, no such differences were observed for miRs 142- 3p, 423-3p, 32-5p, 144-3p, and let-7f-5p. CONCLUSION: Acute plasma miR-223-3p levels appear to detect patients who later have persistent symptoms after mTBI. The results demonstrate the potential utility for such biomarkers to assist in decisions towards early referral for therapy after mTBI.

2.
Epilepsia ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39042520

ABSTRACT

Epilepsy has a peak incidence during the neonatal to early childhood period. These early onset epilepsies may be severe conditions frequently associated with comorbidities such as developmental deficits and intellectual disability and, in a significant percentage of patients, may be medication-resistant. The use of adult rodent models in the exploration of mechanisms and treatments for early life epilepsies is challenging, as it ignores significant age-specific developmental differences. More recently, models developed in immature animals, such as rodent pups, or in three-dimensional organoids may more closely model aspects of the immature brain and could result in more translatable findings. Although models are not perfect, they may offer a more controlled screening platform in studies of mechanisms and treatments, which cannot be done in pediatric patient cohorts. On the other hand, more simplified models with higher throughput capacities are required to deal with the large number of epilepsy candidate genes and the need for new treatment options. Therefore, a combination of different modeling approaches will be beneficial in addressing the unmet needs of pediatric epilepsy patients. In this review, we summarize the discussions on this topic that occurred during the XVI Workshop on Neurobiology of Epilepsy, organized in 2022 by the Neurobiology Commission of the International League Against Epilepsy. We provide an overview of selected models of early onset epilepsies, discussing their advantages and disadvantages. Heterologous expression models provide initial functional insights, and zebrafish, rodent models, and brain organoids present increasingly complex platforms for modeling and validating epilepsy-related phenomena. Together, these models offer valuable insights into early onset epilepsies and accelerate hypothesis generation and therapy discovery.

3.
Epilepsia ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39032019

ABSTRACT

OBJECTIVE: Research suggests that recurrent seizures may lead to neuronal injury. Neurofilament light chain protein (NfL) and glial fibrillary acidic protein (GFAP) levels increase in cerebrospinal fluid and blood in response to neuroaxonal damage, and they have been hypothesized as potential biomarkers for epilepsy. We examined plasma NfL and GFAP levels and their diagnostic utility in differentiating patients with epilepsy from those with psychogenic nonepileptic seizures (PNES) and other nonepileptic disorders. METHODS: We recruited consecutive adults admitted for video-electroencephalographic monitoring and formal neuropsychiatric assessment. NfL and GFAP levels were quantified and compared between different patient groups and an age-matched reference cohort (n = 1926) and correlated with clinical variables in patients with epilepsy. RESULTS: A total of 138 patients were included, of whom 104 were diagnosed with epilepsy, 22 with PNES, and 12 with other conditions. Plasma NfL and GFAP levels were elevated in patients with epilepsy compared to PNES, adjusted for age and sex (NfL p = .04, GFAP p = .04). A high proportion of patients with epilepsy (20%) had NfL levels above the 95th age-matched percentile compared to the reference cohort (5%). NfL levels above the 95th percentile of the reference cohort had a 95% positive predictive value for epilepsy. Patients with epilepsy who had NfL levels above the 95th percentile were younger than those with lower levels (37.5 vs. 43.8 years, p = .03). SIGNIFICANCE: An elevated NfL or GFAP level in an individual patient may support an underlying epilepsy diagnosis, particularly in younger adults, and cautions against a diagnosis of PNES alone. Further examination of the association between NfL and GFAP levels and specific epilepsy subtypes or seizure characteristics may provide valuable insights into disease heterogeneity and contribute to the refinement of diagnosis, understanding pathophysiological mechanisms, and formulating treatment approaches.

4.
J Neuroinflammation ; 21(1): 172, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014496

ABSTRACT

Post-traumatic epilepsy (PTE) is one of the most debilitating consequences of traumatic brain injury (TBI) and is one of the most drug-resistant forms of epilepsy. Novel therapeutic treatment options are an urgent unmet clinical need. The current focus in healthcare has been shifting to disease prevention, rather than treatment, though, not much progress has been made due to a limited understanding of the disease pathogenesis. Neuroinflammation has been implicated in the pathophysiology of traumatic brain injury and may impact neurological sequelae following TBI including functional behavior and post-traumatic epilepsy development. Inflammasome signaling is one of the major components of the neuroinflammatory response, which is increasingly being explored for its contribution to the epileptogenic mechanisms and a novel therapeutic target against epilepsy. This review discusses the role of inflammasomes as a possible connecting link between TBI and PTE with a particular focus on clinical and preclinical evidence of therapeutic inflammasome targeting and its downstream effector molecules for their contribution to epileptogenesis. Finally, we also discuss emerging evidence indicating the potential of evaluating inflammasome proteins in biofluids and the brain by non-invasive neuroimaging, as potential biomarkers for predicting PTE development.


Subject(s)
Brain Injuries, Traumatic , Epilepsy, Post-Traumatic , Inflammasomes , Humans , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/immunology , Inflammasomes/metabolism , Animals , Epilepsy, Post-Traumatic/metabolism , Epilepsy, Post-Traumatic/etiology
5.
Clin Immunol ; 265: 110304, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964633

ABSTRACT

Cladribine (Mavenclad®) is an oral treatment for relapsing remitting MS (RRMS), but its mechanism of action and its effects on innate immune responses in unknown. This study is a prospective Phase IV study of 41 patients with RRMS, and aims to investigate the mechanism of action of cladribine on peripheral monocytes, and its impact on the P2X7 receptor. There was a significant reduction in monocyte count in vivo at week 1 post cladribine administration, and the subset of cells being most impacted were the CD14lo CD16+ 'non-classical' monocytes. Of the 14 cytokines measured in serum, CCL2 levels increased at week 1. In vitro, cladrabine induced a reduction in P2X7R pore as well as channel activity. This study demonstrates a novel mechanism of action for cladribine. It calls for studying potential benefits of cladribine in progressive forms of MS and other neurodegenerative diseases where innate immune related inflammation is implicated in disease pathogenesis.


Subject(s)
Cladribine , Cytokines , Immunity, Innate , Monocytes , Multiple Sclerosis, Relapsing-Remitting , Humans , Cladribine/therapeutic use , Cladribine/pharmacology , Immunity, Innate/drug effects , Female , Male , Adult , Prospective Studies , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Multiple Sclerosis, Relapsing-Remitting/immunology , Multiple Sclerosis, Relapsing-Remitting/blood , Monocytes/immunology , Monocytes/drug effects , Middle Aged , Cytokines/blood , Cytokines/immunology , Receptors, Purinergic P2X7/immunology , Immunosuppressive Agents/therapeutic use , Immunosuppressive Agents/pharmacology , Young Adult
6.
Brain Res Bull ; 215: 110996, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38857832

ABSTRACT

Glioblastoma is the most aggressive and lethal primary brain malignancy with limited treatment options and poor prognosis. Self-renewing glioblastoma cancer stem cells (GSCs) facilitate tumour progression, resistance to conventional treatment and tumour recurrence. GSCs are resistant to standard treatments. There is a need for novel treatment alternatives that effectively target GSCs. The purinergic P2X receptor 7 (P2X7R) is expressed in glioblastomas and has been implicated in disease pathogenesis. However, the roles of P2X7R have not been comprehensively elucidated in conventional treatment-resistant GSCs. This study characterised P2X7R channel and pore function and investigated the effect of pharmacological P2X7R inhibition in GSCs. Immunofluorescence and live cell fluorescent dye uptake experiments revealed P2X7R expression, and channel and pore function in GSCs. Treatment of GSCs with the P2X7R antagonist, AZ10606120 (AZ), for 72 hours significantly reduced GSC numbers, compared to untreated cells. When compared with the effect of the first-line conventional chemotherapy, temozolomide (TMZ), GSCs treated with AZ had significantly lower cell numbers than TMZ-treated cultures, while TMZ treatment alone did not significantly deplete GSC numbers compared to the control. AZ treatment also induced significant lactate dehydrogenase release by GSCs, indicative of treatment-induced cytotoxic cell death. There were no significant differences in the expression of apoptotic markers, Annexin V and cleaved caspase-3, between AZ-treated cells and the control. Collectively, this study reveals for the first time functional P2X7R channel and pore in GSCs and significant GSC depletion following P2X7R inhibition by AZ. These results indicate that P2X7R inhibition may be a novel therapeutic alternative for glioblastoma, with effectiveness against GSCs resistant to conventional chemotherapy.

7.
Neuroimage ; 296: 120682, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38866195

ABSTRACT

Accurate resection cavity segmentation on MRI is important for neuroimaging research involving epilepsy surgical outcomes. Manual segmentation, the gold standard, is highly labour intensive. Automated pipelines are an efficient potential solution; however, most have been developed for use following temporal epilepsy surgery. Our aim was to compare the accuracy of four automated segmentation pipelines following surgical resection in a mixed cohort of subjects following temporal or extra temporal epilepsy surgery. We identified 4 open-source automated segmentation pipelines. Epic-CHOP and ResectVol utilise SPM-12 within MATLAB, while Resseg and Deep Resection utilise 3D U-net convolutional neural networks. We manually segmented the resection cavity of 50 consecutive subjects who underwent epilepsy surgery (30 temporal, 20 extratemporal). We calculated Dice similarity coefficient (DSC) for each algorithm compared to the manual segmentation. No algorithm identified all resection cavities. ResectVol (n = 44, 88 %) and Epic-CHOP (n = 42, 84 %) were able to detect more resection cavities than Resseg (n = 22, 44 %, P < 0.001) and Deep Resection (n = 23, 46 %, P < 0.001). The SPM-based pipelines (Epic-CHOP and ResectVol) performed better than the deep learning-based pipelines in the overall and extratemporal surgery cohorts. In the temporal cohort, the SPM-based pipelines had higher detection rates, however there was no difference in the accuracy between methods. These pipelines could be applied to machine learning studies of outcome prediction to improve efficiency in pre-processing data, however human quality control is still required.


Subject(s)
Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Adult , Female , Male , Epilepsy/surgery , Epilepsy/diagnostic imaging , Young Adult , Image Processing, Computer-Assisted/methods , Middle Aged , Adolescent , Algorithms , Neurosurgical Procedures/methods , Neuroimaging/methods
8.
J Neurol ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918245

ABSTRACT

BACKGROUND AND OBJECTIVE: Autoimmune encephalitis (AE) is often associated with clinically significant memory impairment. This study aimed to evaluate memory in a cross-sectional prospective AE cohort using multiple memory paradigms. METHODS: 52 patients (50% seropositive) meeting Graus criteria for possible AE were prospectively recruited between October 2019 and August 202. A comprehensive examination of memory was performed, including tests of supraspan verbal memory (list learning), logicosemantic memory (story learning), figural memory (learning of geometric designs), and verbal associative learning (verbal paired associates). Memory scores were compared to demographically adjusted normative data. Pattern analysis was conducted to assist in the identification of patterns in memory performances. RESULTS: Mean memory scores were not significantly below the normative mean. At an individual patient level, over 20% of the cohort exhibited impaired delayed figural memory, supraspan verbal memory learning and recall. Observed performances were significantly below expected performance for story learning (p = 0.017) and recall (p = 0.003), figural recall (p < 0.0001), initial acquisition (p < 0.001) and final acquisition of a list (p < 0.001) and all delayed recall measures of the list (p < 0.00001). 54.76% of patients exhibited intact psychometrics, and 16 distinct patterns of impairment emerged, indicating variability in memory outcomes. DISCUSSION: While statistical evidence for memory impairment did not emerge at an aggregate level, a proportion of patients present with evidence of abnormal memory performance on psychometrics. Variability in impaired memory measures argues for an individualised patient-focused approach to clinical assessment in AE. Future research should validate these findings with a larger sample size and explore the relationships between memory profiles and other cognitive functions.

9.
BMJ Open ; 14(6): e083929, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862226

ABSTRACT

INTRODUCTION: This study aims to validate the Seizure-Related Impact Assessment Scale (SERIAS). This novel patient-reported outcome measure (PROM) compares the 'trade-off' between seizures and treatment-related adverse effects, and measures epilepsy disability qualitatively and quantitively. It fills an important gap in PROMs for epilepsy clinical trials and practice. METHODS AND ANALYSIS: Adults with epileptologist-confirmed epilepsy from two Australian Epilepsy Centres are being recruited. People with functional seizures, or who are unable to self-complete English-language validated instruments are excluded. Participants providing informed consent are invited to complete questionnaires at baseline, 3 and 6 months later. SERIAS includes five questions that ask about the number of days per month that seizures or treatment-related adverse effects partially or fully impact work/home/school and family/social/non-work activities, as well as a visual analogue scale regarding epilepsy-related disability. SERIAS is completed alongside seven internationally validated instruments measuring treatment-related adverse effects, mood disorders and quality of life. Target recruitment is n=100, ensuring>50 people complete all questionnaires at all timepoints. Comprehensive psychometric analysis will be performed. Convergent validity will be investigated using bivariate correlations with relevant measures. Reliability will be investigated using Cronbach's alpha, McDonald's omega and test-retest correlation coefficients. SERIAS will be a novel PROM for epilepsy clinical trials and practice. ETHICS AND DISSEMINATION: Multisite ethics approval was granted by the Alfred Health Ethics Committee (HREC 17/23). Results of this study will be disseminated through publication in peer-reviewed journals and presentations at scientific conferences. TRIAL REGISTRATION NUMBER: ACTRN12623000599673.


Subject(s)
Patient Reported Outcome Measures , Psychometrics , Quality of Life , Humans , Reproducibility of Results , Australia , Surveys and Questionnaires/standards , Seizures/diagnosis , Epilepsy/diagnosis , Adult , Research Design , Female
10.
JAMA Netw Open ; 7(6): e2415983, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38848061

ABSTRACT

Importance: Sport-related concussion (SRC), a form of mild traumatic brain injury, is a prevalent occurrence in collision sports. There are no well-established approaches for tracking neurobiologic recovery after SRC. Objective: To examine the levels of serum glial fibrillary acidic protein (GFAP) and neurofilament light (NfL) in Australian football athletes who experience SRC. Design, Setting, and Participants: A cohort study recruiting from April 10, 2021, to September 17, 2022, was conducted through the Victorian Amateur Football Association, Melbourne, Australia. Participants included adult Australian football players with or without SRC. Data analysis was performed from May 26, 2023, to March 27, 2024. Exposure: Sport-related concussion, defined as at least 1 observable sign and/or 2 or more symptoms. Main Outcomes and Measures: Primary outcomes were serum GFAP and NfL levels at 24 hours, and 1, 2, 4, 6, 8, 12, and 26 weeks. Secondary outcomes were symptoms, cognitive performance, and return to training times. Results: Eighty-one individuals with SRC (median age, 22.8 [IQR, 21.3-26.0] years; 89% male) and 56 control individuals (median age, 24.6 [IQR, 22.4-27.3] years; 96% male) completed a total of 945 of 1057 eligible testing sessions. Compared with control participants, those with SRC exhibited higher GFAP levels at 24 hours (mean difference [MD] in natural log, pg/mL, 0.66 [95% CI, 0.50-0.82]) and 4 weeks (MD, 0.17 [95% CI, 0.02-0.32]), and NfL from 1 to 12 weeks (1-week MD, 0.31 [95% CI, 0.12-0.51]; 2-week MD, 0.38 [95% CI, 0.19-0.58]; 4-week MD, 0.31 [95% CI, 0.12-0.51]; 6-week MD, 0.27 [95% CI, 0.07-0.47]; 8-week MD, 0.36 [95% CI, 0.15-0.56]; and 12-week MD, 0.25 [95% CI, 0.04-0.46]). Growth mixture modeling identified 2 GFAP subgroups: extreme prolonged (16%) and moderate transient (84%). For NfL, 3 subgroups were identified: extreme prolonged (7%), moderate prolonged (15%), and minimal or no change (78%). Individuals with SRC who reported loss of consciousness (LOC) (33% of SRC cases) had higher GFAP at 24 hours (MD, 1.01 [95% CI, 0.77-1.24]), 1 week (MD, 0.27 [95% CI, 0.06-0.49]), 2 weeks (MD, 0.21 [95% CI, 0.004-0.42]) and 4 weeks (MD, 0.34 [95% CI, 0.13-0.55]), and higher NfL from 1 week to 12 weeks (1-week MD, 0.73 [95% CI, 0.42-1.03]; 2-week MD, 0.91 [95% CI, 0.61-1.21]; 4-week MD, 0.90 [95% CI, 0.59-1.20]; 6-week MD, 0.81 [95% CI, 0.50-1.13]; 8-week MD, 0.73 [95% CI, 0.42-1.04]; and 12-week MD, 0.54 [95% CI, 0.22-0.85]) compared with SRC participants without LOC. Return to training times were longer in the GFAP extreme compared with moderate subgroup (incident rate ratio [IRR], 1.99 [95% CI, 1.69-2.34]; NfL extreme (IRR, 3.24 [95% CI, 2.63-3.97]) and moderate (IRR, 1.43 [95% CI, 1.18-1.72]) subgroups compared with the minimal subgroup, and for individuals with LOC compared with those without LOC (IRR, 1.65 [95% CI, 1.41-1.93]). Conclusions and Relevance: In this cohort study, a subset of SRC cases, particularly those with LOC, showed heightened and prolonged increases in GFAP and NfL levels, that persisted for at least 4 weeks. These findings suggest that serial biomarker measurement could identify such cases, guiding return to play decisions based on neurobiologic recovery. While further investigation is warranted, the association between prolonged biomarker elevations and LOC may support the use of more conservative return to play timelines for athletes with this clinical feature.


Subject(s)
Athletic Injuries , Biomarkers , Brain Concussion , Glial Fibrillary Acidic Protein , Humans , Brain Concussion/blood , Brain Concussion/physiopathology , Brain Concussion/complications , Male , Female , Biomarkers/blood , Adult , Glial Fibrillary Acidic Protein/blood , Athletic Injuries/blood , Athletic Injuries/complications , Athletic Injuries/physiopathology , Young Adult , Football/injuries , Australia , Neurofilament Proteins/blood , Cohort Studies , Recovery of Function/physiology , Athletes/statistics & numerical data
11.
Epilepsia ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829313

ABSTRACT

Epilepsy's myriad causes and clinical presentations ensure that accurate diagnoses and targeted treatments remain a challenge. Advanced neurotechnologies are needed to better characterize individual patients across multiple modalities and analytical techniques. At the XVIth Workshop on Neurobiology of Epilepsy: Early Onset Epilepsies: Neurobiology and Novel Therapeutic Strategies (WONOEP 2022), the session on "advanced tools" highlighted a range of approaches, from molecular phenotyping of genetic epilepsy models and resected tissue samples to imaging-guided localization of epileptogenic tissue for surgical resection of focal malformations. These tools integrate cutting edge research, clinical data acquisition, and advanced computational methods to leverage the rich information contained within increasingly large datasets. A number of common challenges and opportunities emerged, including the need for multidisciplinary collaboration, multimodal integration, potential ethical challenges, and the multistage path to clinical translation. Despite these challenges, advanced epilepsy neurotechnologies offer the potential to improve our understanding of the underlying causes of epilepsy and our capacity to provide patient-specific treatment.

12.
JAMA Neurol ; 81(7): 732-740, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38778793

ABSTRACT

Importance: First-seizure clinics (FSCs) aim to deliver prompt specialist care to patients with new-onset undifferentiated seizure events. Objective: To determine whether FSC attendance and time to FSC are associated with subsequent health care utilization and mortality and to investigate factors associated with FSC nonattendance. Design, Setting, and Participants: This was a record-linkage, retrospective, cohort study of patients who booked appointments at 2 FSCs between 2007 and 2018. Patients' records were linked to state-wide administrative databases between 2000 and 2021. The setting comprised the FSCs of 2 major metropolitan public hospitals in Melbourne, Australia, providing national inpatient and outpatient adult epilepsy services. Of patients who booked appointments at the FSCs, those who were successfully linked for analysis were included in the study. Patients who recorded only canceled appointments were excluded from analysis of outcomes. Study data were analyzed from January 2000 to December 2021. Exposure: FSC attendance. Main Outcomes and Measures: Subsequent all-cause and seizure-related emergency department (ED) presentations and hospital admissions. Results: Of 10 162 patients with appointments at FSCs, 9392 were linked for analysis, with mean (SD) follow-up time 6.9 (2.8) years after FSC referral. A total of 703 patients were excluded. Among 9392 linked patients, 5398 were male (57.5%; mean [SD] age, 59.7 [11.2] years). FSC attendance was associated with reduced subsequent all-cause emergency presentations (adjusted incidence rate ratio [aIRR], 0.72; 95% CI, 0.66-0.79) and all-cause hospitalization (aIRR, 0.81; 95% CI, 0.75-0.88). Those who attended at the first-scheduled appointment, compared with those who attended only a rescheduled, delayed appointment, had reduced subsequent all-cause emergency presentations (aIRR, 0.83; 95% CI, 0.76-0.91), all-cause hospitalization (aIRR, 0.71; 95% CI, 0.65-0.79), seizure-related presentations (aIRR, 0.40; 95% CI, 0.33-0.49), and mortality (hazard ratio, 0.82; 95% CI, 0.69-0.98). Male sex was associated with nonattendance (adjusted relative risk [aRR], 1.12; 95% CI, 1.03-1.22), as were injury at emergency presentation (aRR, 1.12; 95% CI, 1.01-1.24), psychiatric comorbidity (aRR, 1.68; 95% CI, 1.55-1.81), previous seizure-related presentations (aRR, 1.35; 95% CI, 1.22-1.49), and delays (>14 days) between FSC referral and appointment (aRR, 1.35; 95% CI, 1.18-1.54). Hospitalization at referral was associated with reduced nonattendance (aRR, 0.80; 95% CI, 0.72-0.90), as were non-English language preference (aRR, 0.81; 95% CI, 0.69-0.94), distance greater than 6 mi from home to clinic (aRR, 0.85; 95% CI, 0.76-0.95), and physical comorbidity (aRR, 0.80; 95% CI, 0.72-0.89). Conclusions and Relevance: Results of this cohort study suggest that FSC attendance, particularly early attendance, was associated with reduced rates of subsequent hospital utilization. This knowledge may support adequately resourcing FSCs to improve equitable, timely access. Future study directions include assessing interventions that may support FSC attendance for at-risk groups.


Subject(s)
Seizures , Humans , Male , Female , Middle Aged , Adult , Retrospective Studies , Seizures/epidemiology , Health Services Accessibility/statistics & numerical data , Aged , Patient Acceptance of Health Care/statistics & numerical data , Appointments and Schedules , Cohort Studies , Emergency Service, Hospital/statistics & numerical data , Hospitalization/statistics & numerical data , Australia/epidemiology
13.
Epilepsia Open ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727134

ABSTRACT

OBJECTIVE: Hospital-acquired infections are a common complication for patients with moderate or severe traumatic brain injury (TBI), contributing to morbidity and mortality. As infection-mediated immune responses can predispose towards epilepsy, we hypothesized that post-injury hospital-acquired infections increase the risk of post-traumatic epilepsy (PTE). METHODS: A retrospective cohort study of adults with moderate to severe TBI was conducted using data from the Victorian State Trauma Registry in Australia. Infections were identified from the International Statistical Classification of Diseases and Related Health Problems 10th Revision-Australian Modification (ICD-10-AM) codes, and diagnosis of PTE was determined by the Glasgow Outcome Scale - Extended questionnaire regarding epileptic fits at 24 months follow-up. RESULTS: Of all TBI patients (n = 15 152), 24% had evidence of having had any type of infection, with the most common being pneumonia, urinary tract, and respiratory infections. Of those who responded to the PTE question at 24 months (n = 1361), 11% had developed PTE. Univariable analysis found that the incidence of PTE was higher in patients who had any type of infection compared to patients without an infection (p < 0.001). After adjustment for covariates associated with both development of PTE and risk of infection, multivariable analysis found a solid association between infection and PTE (adjusted RR = 1.59; 95% CI: 1.11-2.28; p = 0.011). Having any type of complicating infection acquired during admission was also associated with poor GOSE outcomes at subsequent follow-ups (adjusted OR = 0.20; 95% CI: 0.11-0.35, p < 0.001). SIGNIFICANCE: These findings suggest that hospital-acquired infections contribute to PTE development after TBI. Future investigation into infections as a modifiable target to reduce poor outcomes after TBI is warranted. PLAIN LANGUAGE SUMMARY: Hospital-acquired infections are common in patients with traumatic brain injuries. A database study of adults with moderate or severe brain injuries in Australia examined whether these infections are associated with the development of epilepsy after a brain injury. 24% of patients had infections, with pneumonia and urinary tract infections being the most common. Of those surveyed 2 years after the injury, 11% developed post-traumatic epilepsy. Patients with infections had a significantly higher risk of epilepsy, even when accounting for other known risk factors, and infections were also linked to poor outcomes more broadly. The study suggests that preventing hospital-acquired infections could be a crucial target for improving outcomes after traumatic brain injuries.

14.
J Neuroinflammation ; 21(1): 122, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720343

ABSTRACT

Pneumonia is a common comorbidity in patients with severe traumatic brain injury (TBI), and is associated with increased morbidity and mortality. In this study, we established a model of intratracheal Klebsiella pneumoniae administration in young adult male and female mice, at 4 days following an experimental TBI, to investigate how K. pneumoniae infection influences acute post-TBI outcomes. A dose-response curve determined the optimal dose of K. pneumoniae for inoculation (1 x 10^6 colony forming units), and administration at 4 days post-TBI resulted in transient body weight loss and sickness behaviors (hypoactivity and acute dyspnea). K. pneumoniae infection led to an increase in pro-inflammatory cytokines in serum and bronchoalveolar lavage fluid at 24 h post-infection, in both TBI and sham (uninjured) mice. By 7 days, when myeloperoxidase + neutrophil numbers had returned to baseline in all groups, lung histopathology was observed with an increase in airspace size in TBI + K. pneumoniae mice compared to TBI + vehicle mice. In the brain, increased neuroinflammatory gene expression was observed acutely in response to TBI, with an exacerbated increase in Ccl2 and Hmox1 in TBI + K. pneumoniae mice compared to either TBI or K. pneumoniae alone. However, the presence of neuroinflammatory immune cells in the injured brain, and the extent of damage to cortical and hippocampal brain tissue, was comparable between K. pneumoniae and vehicle-treated mice by 7 days. Examination of the fecal microbiome across a time course did not reveal any pronounced effects of either injury or K. pneumoniae on bacterial diversity or abundance. Together, these findings demonstrate that K. pneumoniae lung infection after TBI induces an acute and transient inflammatory response, primarily localized to the lungs with some systemic effects. However, this infection had minimal impact on secondary injury processes in the brain following TBI. Future studies are needed to evaluate the potential longer-term consequences of this dual-hit insult.


Subject(s)
Brain Injuries, Traumatic , Disease Models, Animal , Klebsiella Infections , Klebsiella pneumoniae , Mice, Inbred C57BL , Animals , Brain Injuries, Traumatic/microbiology , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/pathology , Mice , Klebsiella Infections/pathology , Klebsiella Infections/microbiology , Female , Male , Cytokines/metabolism , Bronchoalveolar Lavage Fluid
15.
BMJ Neurol Open ; 6(1): e000640, 2024.
Article in English | MEDLINE | ID: mdl-38736586

ABSTRACT

Individuals with acute disseminated encephalomyelitis (ADEM) can experience persistent cognitive deficits and psychopathology, which significantly interferes with daily functioning and quality of life. Here, we review the current literature to characterise the cognitive and psychological sequelae, suggest avenues for further research and discuss the implications for clinical practice. Research on this topic is largely limited to the paediatric population with a few case studies in the adult population. The current evidence demonstrates persistent cognitive deficits in attention and information processing speed, as well as elevated symptoms of depression and anxiety. Results are mixed for executive functions and memory, while language and visuospatial functions are relatively undisturbed. There is emerging evidence to suggest that individuals-particularly children-with ADEM experience persistent cognitive deficits and suffer from elevated symptoms of depression and anxiety. Comprehensive neuropsychological assessments are recommended to guide intervention and monitor progress. Further research is required to clarify our understanding of the cognitive and psychological outcomes following ADEM and the factors that influence them.

16.
Neurology ; 102(9): e209304, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38626375

ABSTRACT

BACKGROUND AND OBJECTIVES: Although commonly used in the evaluation of patients for epilepsy surgery, the association between the detection of localizing 18fluorine fluorodeoxyglucose PET (18F-FDG-PET) hypometabolism and epilepsy surgery outcome is uncertain. We conducted a systematic review and meta-analysis to determine whether localizing 18F-FDG-PET hypometabolism is associated with favorable outcome after epilepsy surgery. METHODS: A systematic literature search was undertaken. Eligible publications included evaluation with 18F-FDG-PET before epilepsy surgery, with ≥10 participants, and those that reported surgical outcome at ≥12 months. Random-effects meta-analysis was used to calculate the odds of achieving a favorable outcome, defined as Engel class I, International League Against Epilepsy class 1-2, or seizure-free, with localizing 18F-FDG-PET hypometabolism, defined as concordant with the epilepsy surgery resection zone. Meta-regression was used to characterize sources of heterogeneity. RESULTS: The database search identified 8,916 studies, of which 98 were included (total patients n = 4,104). Localizing 18F-FDG-PET hypometabolism was associated with favorable outcome after epilepsy surgery for all patients with odds ratio (OR) 2.68 (95% CI 2.08-3.45). Subgroup analysis yielded similar findings for those with (OR 2.64, 95% CI 1.54-4.52) and without epileptogenic lesion detected on MRI (OR 2.49, 95% CI 1.80-3.44). Concordance with EEG (OR 2.34, 95% CI 1.43-3.83), MRI (OR 1.69, 95% CI 1.19-2.40), and triple concordance with both (OR 2.20, 95% CI 1.32-3.64) was associated with higher odds of favorable outcome. By contrast, diffuse 18F-FDG-PET hypometabolism was associated with worse outcomes compared with focal hypometabolism (OR 0.34, 95% CI 0.22-0.54). DISCUSSION: Localizing 18F-FDG-PET hypometabolism is associated with favorable outcome after epilepsy surgery, irrespective of the presence of an epileptogenic lesion on MRI. The extent of 18F-FDG-PET hypometabolism provides additional information, with diffuse hypometabolism associated with worse surgical outcome than focal 18F-FDG-PET hypometabolism. These findings support the incorporation of 18F-FDG-PET into routine noninvasive investigations for patients being evaluated for epilepsy surgery to improve epileptogenic zone localization and to aid patient selection for surgery.

17.
Neurotrauma Rep ; 5(1): 387-408, 2024.
Article in English | MEDLINE | ID: mdl-38655112

ABSTRACT

The Australian Traumatic Brain Injury Initiative (AUS-TBI) aims to select a set of measures to comprehensively predict and assess outcomes following moderate-to-severe traumatic brain injury (TBI) across Australia. The aim of this article was to report on the implementation and findings of an evidence-based consensus approach to develop AUS-TBI recommendations for outcome measures following adult and pediatric moderate-to-severe TBI. Following consultation with a panel of expert clinicians, Aboriginal and Torres Strait Islander representatives and a Living Experience group, and preliminary literature searches with a broader focus, a decision was made to focus on measures of mortality, everyday functional outcomes, and quality of life. Standardized searches of bibliographic databases were conducted through March 2022. Characteristics of 75 outcome measures were extracted from 1485 primary studies. Consensus meetings among the AUS-TBI Steering Committee, an expert panel of clinicians and researchers and a group of individuals with lived experience of TBI resulted in the production of a final list of 11 core outcome measures: the Functional Independence Measure (FIM); Glasgow Outcome Scale-Extended (GOS-E); Satisfaction With Life Scale (SWLS) (adult); mortality; EuroQol-5 Dimensions (EQ5D); Mayo-Portland Adaptability Inventory (MPAI); Return to Work /Study (adult and pediatric); Functional Independence Measure for Children (WEEFIM); Glasgow Outcome Scale Modified for Children (GOS-E PEDS); Paediatric Quality of Life Scale (PEDS-QL); and Strengths and Difficulties Questionnaire (pediatric). These 11 outcome measures will be included as common data elements in the AUS-TBI data dictionary. Review Registration PROSPERO (CRD42022290954).

18.
Neurotrauma Rep ; 5(1): 424-447, 2024.
Article in English | MEDLINE | ID: mdl-38660461

ABSTRACT

The Australian Traumatic Brain Injury Initiative (AUS-TBI) aims to develop a health informatics approach to collect data predictive of outcomes for persons with moderate-severe TBI across Australia. Central to this approach is a data dictionary; however, no systematic reviews of methods to define and develop data dictionaries exist to-date. This rapid systematic review aimed to identify and characterize methods for designing data dictionaries to collect outcomes or variables in persons with neurological conditions. Database searches were conducted from inception through October 2021. Records were screened in two stages against set criteria to identify methods to define data dictionaries for neurological conditions (International Classification of Diseases, 11th Revision: 08, 22, and 23). Standardized data were extracted. Processes were checked at each stage by independent review of a random 25% of records. Consensus was reached through discussion where necessary. Thirty-nine initiatives were identified across 29 neurological conditions. No single established or recommended method for defining a data dictionary was identified. Nine initiatives conducted systematic reviews to collate information before implementing a consensus process. Thirty-seven initiatives consulted with end-users. Methods of consultation were "roundtable" discussion (n = 30); with facilitation (n = 16); that was iterative (n = 27); and frequently conducted in-person (n = 27). Researcher stakeholders were involved in all initiatives and clinicians in 25. Importantly, only six initiatives involved persons with lived experience of TBI and four involved carers. Methods for defining data dictionaries were variable and reporting is sparse. Our findings are instructive for AUS-TBI and can be used to further development of methods for defining data dictionaries.

19.
Mult Scler Relat Disord ; 85: 105596, 2024 May.
Article in English | MEDLINE | ID: mdl-38574722

ABSTRACT

Clinicians are becoming increasingly aware of the cognitive and psychopathological consequences of neurological diseases, which were once thought to manifest with motor and sensory impairments only. The cognitive profile of multiple sclerosis, in particular, is now well-characterised. Similar efforts are being made to better characterise the cognitive profile of other central nervous system inflammatory demyelinating autoimmune disorders. This review discusses the current understanding of the cognitive and psychological features of neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). Detailed analysis of the cognitive sequelae of the above conditions can not only assist with understanding disease pathogenesis but also can guide appropriate management of the symptoms and consequently, improve the quality of life and long-term outcomes for these patients. This narrative review will also identify research gaps and provide recommendations for future directions in the field.


Subject(s)
Myelin-Oligodendrocyte Glycoprotein , Neuromyelitis Optica , Humans , Neuromyelitis Optica/immunology , Myelin-Oligodendrocyte Glycoprotein/immunology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/immunology , Autoantibodies/immunology
20.
BMJ Neurol Open ; 6(1): e000570, 2024.
Article in English | MEDLINE | ID: mdl-38646507

ABSTRACT

Background: Alzheimer's disease (AD) and age-related macular degeneration (AMD) share similar pathological features, suggesting common genetic aetiologies between the two. Investigating gene associations between AD and AMD may provide useful insights into the underlying pathogenesis and inform integrated prevention and treatment for both diseases. Methods: A stratified quantile-quantile (QQ) plot was constructed to detect the pleiotropy among AD and AMD based on genome-wide association studies data from 17 008 patients with AD and 30 178 patients with AMD. A Bayesian conditional false discovery rate-based (cFDR) method was used to identify pleiotropic genes. UK Biobank was used to verify the pleiotropy analysis. Biological network and enrichment analysis were conducted to explain the biological reason for pleiotropy phenomena. A diagnostic test based on gene expression data was used to predict biomarkers for AD and AMD based on pleiotropic genes and their regulators. Results: Significant pleiotropy was found between AD and AMD (significant leftward shift on QQ plots). APOC1 and APOE were identified as pleiotropic genes for AD-AMD (cFDR <0.01). Network analysis revealed that APOC1 and APOE occupied borderline positions on the gene co-expression networks. Both APOC1 and APOE genes were enriched on the herpes simplex virus 1 infection pathway. Further, machine learning-based diagnostic tests identified that APOC1, APOE (areas under the curve (AUCs) >0.65) and their upstream regulators, especially ZNF131, ADNP2 and HINFP, could be potential biomarkers for both AD and AMD (AUCs >0.8). Conclusion: In this study, we confirmed the genetic pleiotropy between AD and AMD and identified APOC1 and APOE as pleiotropic genes. Further, the integration of multiomics data identified ZNF131, ADNP2 and HINFP as novel diagnostic biomarkers for AD and AMD.

SELECTION OF CITATIONS
SEARCH DETAIL
...