Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Biochem ; 658: 114924, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36162445

ABSTRACT

Peptide loss due to surface absorption can happen at any step in a protein analysis workflow and is sometimes especially deleterious for hydrophobic peptides. In this study, we found the LC-MS compatible surfactant, n-Dodecyl-ß-D-maltoside (DDM), can maximize hydrophobic peptide recovery in various samples including single cell digests, mAb clinical PK samples, and mAb peptide mapping samples. In HeLa single cell proteomics analysis, more than half of all unique peptides identified were found only in DDM prepared samples, most of which had significantly higher hydrophobicities compared to peptides in control samples. In clinical PK studies, DDM enhanced hydrophobic complementarity-determining region (CDR) peptide signals significantly. The fold change of CDR peptides' intensity enhancement in DDM added samples compared to controls correlate with peptide retention time and hydrophobicity, providing guidance for surrogate peptide selection and peptide standard handling in PK studies. For peptide mapping analysis of mAbs, DDM can improve hydrophobic peptide signal and solution stability over 48 h in an autosampler at 4 °C, which can aid method qualification and transfer during drug development. Lastly, maximizing hydrophobic peptide recovery from samples dried in vacuo was achieved by DDM reconstitution, which provided higher signal for later eluting peaks and higher proteome coverage overall.


Subject(s)
Proteomics , Surface-Active Agents , Proteomics/methods , Surface-Active Agents/chemistry , Proteome/chemistry , Complementarity Determining Regions , Peptides/metabolism , Mass Spectrometry , Hydrophobic and Hydrophilic Interactions , Antibodies
2.
Anal Chem ; 93(10): 4383-4390, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33656852

ABSTRACT

Liquid chromatography coupled to mass spectrometry (LC-MS) is a powerful tool for the analysis of host cell proteins (HCP) during antibody drug process development due to its sensitivity, selectivity, and adaptability. However, the enormous dynamic range between the therapeutic antibody and accompanying HCPs poses a significant challenge for LC-MS based detection of these low abundance impurities. To address this challenge, enrichment of HCPs via immunoaffinity, protein A, 2D-LC, or other strategies is typically performed. However, these enrichments are time-consuming and sometimes require a large quantity of sample. Here, we report a simple and sensitive strategy to analyze HCPs in therapeutic antibody samples without cumbersome enrichment by combining an ultra-low trypsin concentration during digestion under nondenaturing conditions, a long chromatographic gradient, and BoxCar acquisition (ULTLB) on a quadrupole-Orbitrap mass spectrometer. Application of this strategy to the NIST monoclonal antibody standard (NISTmAb) resulted in the identification of 453 mouse HCPs, which is a significant increase in the number of identified HCPs without enrichment compared to previous reports. Known amounts of HCPs were spiked into the purified antibody drug substance, demonstrating that the method sensitivity is as low as 0.5 ppm. Thus, the ULTLB method represents a sensitive and simple platform for deep profiling of HCPs in antibodies.


Subject(s)
Antibodies, Monoclonal , Digestion , Animals , Chromatography, Liquid , Mass Spectrometry , Mice , Trypsin
3.
J Pharm Biomed Anal ; 197: 113963, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33626446

ABSTRACT

Therapeutic monoclonal and bispecific antibodies are susceptible to modification after protein biosynthesis. These post-translational modifications (PTMs) not only contribute to mass and charge heterogeneity, but they can also negatively impact the molecule's activity, half-life, and immunogenicity. Therefore, identification and quantification of PTMs are critical to ensure the safety and efficacy of an antibody therapeutic as well as demonstrate product consistency and process control. Unprocessed C-terminal lysine on the heavy chain (HC) is a prevalent modification that contributes to this charge heterogeneity in antibodies. Peptide mapping through liquid chromatography tandem mass spectrometry (LC-MS2) enjoys higher selectivity and sensitivity for measuring this PTM relative to global PTM methods, but differences in the ionization efficiencies of the unprocessed C-terminal K peptide and the truncated C-terminal K peptide result in its overestimation. Consequently, large discrepancies in this PTM's measured abundance may exist between different characterization assays used in regulatory filings, which can be further compounded by large variability when multiple mass spectrometers are used to quantify C-terminal K during a therapeutic's lifespan. In this study, we propose a simple new method to quantify unprocessed C-terminal K in antibodies in a single LC-MS2 run that incorporates heavy isotopic standards for both the unprocessed and truncated C-terminal K peptide to build a response curve and correct for the disparity in ionization efficiency between these two different peptide sequences. The approach was evaluated across two different Orbitrap-based mass spectrometers using multiple monoclonal and bispecific therapeutic antibodies, resulting in accurate (<10% error, as determined with peptide standards) and precise C-terminal K quantification during peptide mapping analysis.


Subject(s)
Antibodies, Monoclonal , Lysine , Chromatography, Liquid , Mass Spectrometry , Peptide Mapping , Peptides
4.
Science ; 350(6260): aab4070, 2015 Oct 30.
Article in English | MEDLINE | ID: mdl-26472759

ABSTRACT

Telomerase helps maintain telomeres by processive synthesis of telomere repeat DNA at their 3'-ends, using an integral telomerase RNA (TER) and telomerase reverse transcriptase (TERT). We report the cryo-electron microscopy structure of Tetrahymena telomerase at ~9 angstrom resolution. In addition to seven known holoenzyme proteins, we identify two additional proteins that form a complex (TEB) with single-stranded telomere DNA-binding protein Teb1, paralogous to heterotrimeric replication protein A (RPA). The p75-p45-p19 subcomplex is identified as another RPA-related complex, CST (CTC1-STN1-TEN1). This study reveals the paths of TER in the TERT-TER-p65 catalytic core and single-stranded DNA exit; extensive subunit interactions of the TERT essential N-terminal domain, p50, and TEB; and other subunit identities and structures, including p19 and p45C crystal structures. Our findings provide structural and mechanistic insights into telomerase holoenzyme function.


Subject(s)
RNA/chemistry , Telomerase/chemistry , Tetrahymena/enzymology , Catalytic Domain , Cryoelectron Microscopy , Crystallography, X-Ray , DNA, Single-Stranded/chemistry , Holoenzymes/chemistry , Protein Binding , Protein Conformation , Protein Subunits/chemistry , Replication Protein A/chemistry , Telomere/chemistry , Telomere Homeostasis , Telomere-Binding Proteins
5.
Appl Environ Microbiol ; 79(17): 5338-44, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23811506

ABSTRACT

Benzylsuccinate synthase (bssA) genes associated with toluene degradation were profiled across a groundwater contaminant plume under nitrate-reducing conditions and were detected in significant numbers throughout the plume. However, differences between groundwater and core sediment samples suggested that microbial transport, rather than local activity, was the underlying cause of the high copy numbers within the downgradient plume. Both gene transcript and reactant concentrations were consistent with this hypothesis. Expression of bssA genes from denitrifying toluene degraders was induced by toluene but only in the presence of nitrate, and transcript abundance dropped rapidly following the removal of either toluene or nitrate. The drop in bssA transcripts following the removal of toluene could be described by an exponential decay function with a half-life on the order of 1 h. Interestingly, bssA transcripts never disappeared completely but were always detected at some level if either inducer was present. Therefore, the detection of transcripts alone may not be sufficient evidence for contaminant degradation. To avoid mistakenly associating basal-level gene expression with actively degrading microbial populations, an integrated approach using the ratio of functional gene transcripts to gene copies is recommended. This approach minimizes the impact of microbial transport on activity assessment and allows reliable assessments of microbial activity to be obtained from water samples.


Subject(s)
Carbon-Carbon Lyases/biosynthesis , Gene Expression Profiling , Groundwater/microbiology , Metagenome , Toluene/metabolism , Anaerobiosis , Biotransformation , Denitrification , Nitrates/metabolism , Time Factors , Water Pollutants, Chemical/metabolism
6.
Environ Sci Technol ; 47(3): 1573-80, 2013 Feb 05.
Article in English | MEDLINE | ID: mdl-23311327

ABSTRACT

The fate of nano zerovalent iron (nZVI) during subsurface injection was examined using carboxymethylcellulose (CMC) stabilized nZVI in a very large three-dimensional physical model aquifer with detailed monitoring using multiple, complementary detection methods. A fluorescein tracer test in the aquifer plus laboratory column data suggested that the very-aggressive flow conditions necessary to achieve 2.5 m of nZVI transport could be obtained using a hydraulically constrained flow path between injection and extraction wells. However, total unoxidized nZVI was transported only about 1 m and <2% of the injected nZVI concentration reached that distance. The experimental data also indicated that groundwater flow changed during injection, likely due to hydrogen bubble formation, which diverted the nZVI away from the targeted flow path. The leading edge of the iron plume became fully oxidized during transport. However, within the plume, oxidation of nZVI decreased in a fashion consistent with progressive depletion of aquifer "reductant demand". To directly quantify the extent of nZVI transport, a spectrophotometric method was developed, and the results indicated that deployment of unoxidized nZVI for groundwater remediation will likely be difficult.


Subject(s)
Carboxymethylcellulose Sodium/chemistry , Iron/chemistry , Motion , Nanoparticles/chemistry , Electric Conductivity , Electrodes , Oxygen/analysis , Solubility , Time Factors , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...