Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 41(11): 111800, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36516753

ABSTRACT

Animals sense and adapt to decreased oxygen availability, but whether and how hypoxia exposure in ancestors can elicit phenotypic consequences in normoxia-reared descendants are unclear. We show that hypoxia educes an intergenerational reduction in lipids and a transgenerational reduction in fertility in the nematode Caenorhabditis elegans. The transmission of these epigenetic phenotypes is dependent on repressive histone-modifying enzymes and the argonaute HRDE-1. Feeding naive C. elegans small RNAs extracted from hypoxia-treated worms is sufficient to induce a fertility defect. Furthermore, the endogenous small interfering RNA F44E5.4/5 is upregulated intergenerationally in response to hypoxia, and soaking naive normoxia-reared C. elegans with F44E5.4/5 double-stranded RNA (dsRNA) is sufficient to induce an intergenerational fertility defect. Finally, we demonstrate that labeled F44E5.4/5 dsRNA is itself transmitted from parents to children. Our results suggest that small RNAs respond to the environment and are sufficient to transmit non-genetic information from parents to their naive children.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Inheritance Patterns , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , RNA, Small Interfering/genetics , RNA, Double-Stranded/genetics , Epigenesis, Genetic , Hypoxia/genetics , RNA Interference
2.
Adv Exp Med Biol ; 1389: 177-210, 2022.
Article in English | MEDLINE | ID: mdl-36350511

ABSTRACT

Chromatin, consisting of deoxyribonucleic acid (DNA) wrapped around histone proteins, facilitates DNA compaction and allows identical DNA code to confer many different cellular phenotypes. This biological versatility is accomplished in large part by post-translational modifications to histones and chemical modifications to DNA. These modifications direct the cellular machinery to expand or compact specific chromatin regions and mark certain regions of the DNA as important for cellular functions. While each of the four bases that make up DNA can be modified (Iyer et al., Prog Mol Biol Transl Sci. 101:25-104, 2011), this chapter will focus on methylation of the 6th position on adenines (6mA). 6mA is a prevalent modification in unicellular organisms and until recently was thought to be restricted to them. A flurry of conflicting studies have proposed that 6mA either does not exist, is present at low levels, or is present at relatively high levels and regulates complex processes in different multicellular eukaryotes. Here, we will briefly describe the history of 6mA, examine its evolutionary conservation, and evaluate the current methods for detecting 6mA. We will discuss the proteins that have been reported to bind and regulate 6mA and examine the known and potential functions of this modification in eukaryotes. Finally, we will close with a discussion of the ongoing debate about whether 6mA exists as a directed DNA modification in multicellular eukaryotes.


Subject(s)
DNA Methylation , Histones , Histones/genetics , Histones/metabolism , Chromatin/genetics , Adenine/chemistry , Eukaryota/genetics , Eukaryota/metabolism , DNA/metabolism
3.
Proc Natl Acad Sci U S A ; 117(23): 13033-13043, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32461362

ABSTRACT

Trichomonas vaginalis is a common sexually transmitted parasite that colonizes the human urogenital tract causing infections that range from asymptomatic to highly inflammatory. Recent works have highlighted the importance of histone modifications in the regulation of transcription and parasite pathogenesis. However, the nature of DNA methylation in the parasite remains unexplored. Using a combination of immunological techniques and ultrahigh-performance liquid chromatography (UHPLC), we analyzed the abundance of DNA methylation in strains with differential pathogenicity demonstrating that N6-methyladenine (6mA), and not 5-methylcytosine (5mC), is the main DNA methylation mark in T. vaginalis Genome-wide distribution of 6mA reveals that this mark is enriched at intergenic regions, with a preference for certain superfamilies of DNA transposable elements. We show that 6mA in T. vaginalis is associated with silencing when present on genes. Interestingly, bioinformatics analysis revealed the presence of transcriptionally active or repressive intervals flanked by 6mA-enriched regions, and results from chromatin conformation capture (3C) experiments suggest these 6mA flanked regions are in close spatial proximity. These associations were disrupted when parasites were treated with the demethylation activator ascorbic acid. This finding revealed a role for 6mA in modulating three-dimensional (3D) chromatin structure and gene expression in this divergent member of the Excavata.


Subject(s)
Adenine/metabolism , Chromatin/chemistry , DNA Methylation/genetics , Trichomonas vaginalis/genetics , Ascorbic Acid/pharmacology , Cell Culture Techniques , Chromatin/genetics , Chromatin/metabolism , Computational Biology , DNA Methylation/drug effects , DNA Transposable Elements/genetics , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Molecular Conformation , Sequence Analysis, DNA
4.
PLoS Genet ; 15(7): e1008252, 2019 07.
Article in English | MEDLINE | ID: mdl-31283754

ABSTRACT

The biological roles of nucleic acid methylation, other than at the C5-position of cytosines in CpG dinucleotides, are still not well understood. Here, we report genetic evidence for a critical role for the putative DNA demethylase NMAD-1 in regulating meiosis in C. elegans. nmad-1 mutants have reduced fertility. They show defects in prophase I of meiosis, which leads to reduced embryo production and an increased incidence of males due to defective chromosomal segregation. In nmad-1 mutant worms, nuclear staging beginning at the leptotene and zygotene stages is disorganized, the cohesin complex is mislocalized at the diplotene and diakinesis stages, and chromosomes are improperly condensed, fused, or lost by the end of diakinesis. RNA sequencing of the nmad-1 germline revealed reduced induction of DNA replication and DNA damage response genes during meiosis, which was coupled with delayed DNA replication, impaired DNA repair and increased apoptosis of maturing oocytes. To begin to understand how NMAD-1 regulates DNA replication and repair, we used immunoprecipitation and mass spectrometry to identify NMAD-1 binding proteins. NMAD-1 binds to multiple proteins that regulate DNA repair and replication, including topoisomerase TOP-2 and co-localizes with TOP-2 on chromatin. Moreover, the majority of TOP-2 binding to chromatin depends on NMAD-1. These results suggest that NMAD-1 functions at DNA replication sites to regulate DNA replication and repair during meiosis.


Subject(s)
Caenorhabditis elegans Proteins/genetics , DNA Repair , DNA Replication , Dioxygenases/genetics , Oxidoreductases, N-Demethylating/genetics , Animals , Caenorhabditis elegans , Caenorhabditis elegans Proteins/metabolism , Chromosome Segregation , Dioxygenases/metabolism , Male , Meiosis , Mutation , Oxidoreductases, N-Demethylating/metabolism , Sequence Analysis, RNA
5.
Adv Exp Med Biol ; 945: 213-246, 2016.
Article in English | MEDLINE | ID: mdl-27826841

ABSTRACT

Chromatin, consisting of deoxyribonucleic acid (DNA) wrapped around histone proteins, facilitates DNA compaction and allows identical DNA codes to confer many different cellular phenotypes. This biological versatility is accomplished in large part by posttranslational modifications to histones and chemical modifications to DNA. These modifications direct the cellular machinery to expand or compact specific chromatin regions and mark regions of the DNA as important for cellular functions. While each of the four bases that make up DNA can be modified (Iyer et al. 2011), this chapter will focus on methylation of the sixth position on adenines (6mA), as this modification has been poorly characterized in recently evolved eukaryotes, but shows promise as a new conserved layer of epigenetic regulation. 6mA was previously thought to be restricted to unicellular organisms, but recent work has revealed its presence in metazoa. Here, we will briefly describe the history of 6mA, examine its evolutionary conservation, and evaluate the current methods for detecting 6mA. We will discuss the enzymes that bind and regulate this mark and finally examine known and potential functions of 6mA in eukaryotes.


Subject(s)
Adenine/chemistry , DNA Methylation/genetics , DNA/genetics , Epigenesis, Genetic , Adenine/metabolism , Chromatin/genetics , DNA/chemistry , Eukaryota/genetics , Evolution, Molecular , Histones/genetics , Protein Processing, Post-Translational/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...