Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Langmuir ; 40(8): 4228-4235, 2024 02 27.
Article in English | MEDLINE | ID: mdl-38357880

ABSTRACT

Simple synthetic and natural hydrogels can be formulated to have elastic moduli that match biological tissues, leading to their widespread application as model systems for tissue engineering, medical device development, and drug delivery vehicles. However, two different hydrogels having the same elastic modulus but differing in microstructure or nanostructure can exhibit drastically different mechanical responses, including their poroelasticity, lubricity, and load bearing capabilities. Here, we investigate the mechanical response of collagen-1 networks to local and bulk compressive loads. We compare these results to the behavior of polyacrylamide, a fundamentally different class of hydrogel network consisting of flexible polymer chains. We find that the high bending rigidity of collagen fibers, which suppresses entropic bending fluctuations and osmotic pressure, facilitates the bulk compression of collagen networks under infinitesimal applied stress. These results are fundamentally different from the behavior of flexible polymer networks in which the entropic thermal fluctuations of the polymer chains result in an osmotic pressure that must first be overcome before bulk compression can occur. Furthermore, we observe minimal transverse strain during the axial loading of collagen networks, a behavior reminiscent of open-celled cellular solids. Inspired by these results, we applied mechanical models of cellular solids to predict the elastic moduli of the collagen networks and found agreement with the moduli values measured through contact indentation. Collectively, these results suggest that unlike flexible polymer networks that are often considered incompressible, collagen hydrogels behave like rigid porous solids that volumetrically compress and expel water rather than spreading laterally under applied normal loads.


Subject(s)
Collagen , Extracellular Matrix , Pressure , Elastic Modulus , Collagen/chemistry , Polymers , Hydrogels/chemistry , Stress, Mechanical
2.
Langmuir ; 39(5): 1740-1749, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36637895

ABSTRACT

Polymer adsorption at the solid/liquid interface depends not only on the chemical composition of the polymer but also on the specific placement of the monomers along the polymer sequence. However, challenges in designing polymers with well-controlled sequences have limited explorations into the role of polymer sequence on adsorption behavior to molecular simulations. Here, we demonstrate how the sequence control offered by polypeptide synthesis can be utilized to study the effects small changes in polymer sequence have on polymer adsorption behavior at the solid/liquid interface. Through a combination of quartz crystal microbalance with dissipation monitoring and total internal reflection ellipsometry, we study the adsorption behavior of three polypeptides, consisting of 90% lysine and 10% cysteine, onto a gold surface. We find different mechanisms are responsible for the adsorption of polypeptides and the resulting conformation on the surface. The initial adsorption of the polypeptides is driven by electrostatic interactions between the polylysine and the gold surface. Once adsorbed, the cysteine undergoes a thiol-Au reaction with the surface, altering the conformation of the polymer layer. Our findings suggest the conformation of the polypeptide layer is dependent on the placement of the cysteines within the sequence; polypeptide chains with evenly spaced cysteine groups adopt a more tightly bound "train" conformation as compared to polypeptides with closely grouped cysteine groups. We envision that the methodologies presented here to study sequence specific adsorption behaviors using polypeptides could be a valuable tool to complement molecular simulations studies.


Subject(s)
Cysteine , Polymers , Adsorption , Polymers/chemistry , Peptides , Gold/chemistry , Surface Properties , Quartz Crystal Microbalance Techniques
3.
Soft Matter ; 18(47): 9045-9056, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36416054

ABSTRACT

The effect of nanoscale defects on nanoparticle dynamics in defective tetra-poly(ethylene glycol) (tetra-PEG) hydrogels is investigated using single particle tracking. In a swollen nearly homogeneous hydrogel, PEG-functionalized quantum dot (QD) probes with a similar hydrodynamic diameter (dh = 15.1 nm) to the mesh size (〈ξs〉 = 16.3 nm), are primarily immobile. As defects are introduced to the network by reaction-tuning, both the percentage of mobile QDs and the size of displacements increase as the number and size of the defects increase with hydrolysis time, although a large portion of the QDs remain immobile. To probe the effect of nanoparticle size on dynamics in defective networks, the transport of dh = 47.1 nm fluorescent polystyrene (PS) and dh = 9.6 nm PEG-functionalized QDs is investigated. The PS nanoparticles are immobile in all hydrogels, even in highly defective networks with an open structure. Conversely, the smaller QDs are more sensitive to perturbations in the network structure with an increased percentage of mobile particles and larger diffusion coefficients compared to the larger QDs and PS nanoparticles. The differences in nanoparticle mobility as a function of size suggests that particles of different sizes probe different length scales of the defects, indicating that metrics such as the confinement ratio alone cannot predict bulk dynamics in these systems. This study provides insight into designing hydrogels with controlled transport properties, with particular importance for degradable hydrogels for drug delivery applications.


Subject(s)
Hydrogels
4.
J Colloid Interface Sci ; 614: 522-531, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35121510

ABSTRACT

Polymer and small molecules are often used to modify the wettability of mineral surfaces which facilitates the separation of valuable minerals such as molybdenum disulfide (MoS2) from gangue material through the process of froth flotation. By design, traditional methods used in the field for evaluating the separation efficacy of these additives fail to give proper access to adsorption kinetics and molecule conformation, crucial aspects of flotation where contact times may not allow for full thermodynamic equilibrium. Thus, there is a need for alternative methods for evaluating additives that accurately capture these features during the adsorption of additives at the solid/liquid interface. Here, we present a novel method for preparing MoS2 films on quartz crystals used for Quartz Crystal Microbalance with Dissipation (QCM-D) measurements through an electrochemical deposition process. The resulting films exhibit well-controlled structure, composition, and thickness and therefore are ideal for quantifying polymer adsorption. After deposition, the sensors can be annealed without damaging the quartz crystal, resulting in a phase transition of the MoS2 from the as-deposited, amorphous phase to the 2H semiconducting phase. Furthermore, we demonstrate the application of these sensors to study the interactions of additives at the solid/liquid interface by investigating the adsorption of a model polymer, dextran, onto both the amorphous and crystalline MoS2 surfaces. We find that the adsorption rate of dextran onto the amorphous surface is approximately twice as fast as the adsorption onto the annealed surface. These studies demonstrate the ability to gain insight into the short-term kinetics of interaction between molecules and mineral surface, behavior that is key to designing additives with superior separation efficiency.

5.
Soft Matter ; 17(14): 3886-3894, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33683242

ABSTRACT

Capillary forces acting at the interfaces of soft materials lead to deformations over the scale of the elastocapillary length. When surface stresses exceed a material's yield stress, a plastocapillary effect is expected to arise, resulting in yielding and plastic deformation. Here, we explore the interfacial instabilities of 3D-printed fluid and elastic beams embedded within viscoelastic fluids and elastic solid support materials. Interfacial instabilities are driven by the immiscibility between the paired phases or their solvents. We find that the stability of an embedded structure is predicted from the balance between the yield stress of the elastic solid, τy, the apparent interfacial tension between the materials, γ', and the radius of the beam, r, such that τy > γ'/r. When the capillary forces are sufficiently large, we observe yielding and failure of the 3D printed beams. Furthermore, we observe new coiling and buckling instabilities emerging when elastic beams are embedded within viscous fluid support materials. The coiling behavior appear analogous to elastic rope coiling whereas the buckling instability follows the scaling behavior predicted from Euler-Bernoulli beam theory.

6.
Soft Matter ; 16(28): 6684, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32639490

ABSTRACT

Correction for '3D aggregation of cells in packed microgel media' by Cameron D. Morley et al., Soft Matter, 2020, DOI: 10.1039/d0sm00517g.

7.
Soft Matter ; 16(28): 6572-6581, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32589183

ABSTRACT

In both natural and applied contexts, investigating cell self-assembly and aggregation within controlled 3D environments leads to improved understanding of how structured cell assemblies emerge, what determines their shapes and sizes, and whether their structural features are stable. However, the inherent limits of using solid scaffolding or liquid spheroid culture for this purpose restrict experimental freedom in studies of cell self-assembly. Here we investigate multi-cellular self-assembly using a 3D culture medium made from packed microgels as a bridge between the extremes of solid scaffolds and liquid culture. We find that cells dispersed at different volume fractions in this microgel-based 3D culture media aggregate into clusters of different sizes and shapes, forming large system-spanning networks at the highest cell densities. We find that the transitions between different states of assembly can be controlled by the level of cell-cell cohesion and by the yield stress of the packed microgel environment. Measurements of aggregate fractal dimension show that those with increased cell-cell cohesion are less sphere-like and more irregularly shaped, indicating that cell stickiness inhibits rearrangements in aggregates, in analogy to the assembly of colloids with strong cohesive bonds. Thus, the effective surface tension often expected to emerge from increased cell cohesion is suppressed in this type of cell self-assembly.


Subject(s)
Microgels , Colloids , Tissue Scaffolds
8.
Bio Protoc ; 10(23): e3847, 2020 Dec 05.
Article in English | MEDLINE | ID: mdl-33889659

ABSTRACT

The linker of nucleoskeleton and cytoskeleton (LINC) complex is responsible for tethering the nucleus to the cytoskeleton, providing a pathway for the cell's nucleus to sense mechanical signals from the environment. Recently, we explored the role of the LINC complex in the development of glandular epithelial acini, such as those found in kidneys, breasts, and other organs. Acini developed with disrupted LINC complexes exhibited a loss of structural integrity, including filling of the lumen structures. As part of our investigation, we performed a mechanical indentation assay of LINC disrupted and undisrupted MDCK II cells using a micro-indentation instrument mounted above a laser-scanning confocal microscope. Through a combination of force measurements acquired from the micro-indentation instrument and contact area measurements taken from fluorescence images, we determined the average contact pressure at which the acini structure ruptured. Here, we provide a detailed description of the design of the micro-indentation instrument, as well as the experimental steps developed to perform these bio-indentation measurements. Furthermore, we discuss the data analysis steps necessary to determine the rupture pressure of the acini structures. While this protocol is focused on the indentation of individual glandular acini, the methods presented here can be adapted to perform a variety of mechanical indentation experiments for both 2D and 3D biological systems.

9.
Chem Sci ; 10(33): 7702-7708, 2019 Sep 07.
Article in English | MEDLINE | ID: mdl-31588318

ABSTRACT

The recent attention given to functionalities that respond to mechanical force has led to a deeper understanding of force transduction and mechanical wear in polymeric materials. Furthermore, polymers have been carefully designed such that activation of "mechanophores" leads to productive outputs, such as material reinforcement or changes in optical properties. In this work, a crosslinker containing an anthracene-maleimide linkage was designed and used to prepare networks that display a fluorescence response when damaged. The pressure-dependent damage of poly(N,N-dimethylacrylamide) networks was monitored using solid-state fluorescence spectroscopy, with increasing compressive forces leading to higher degrees of mechanophore activation. When a stamp was used to compress the networks, only the areas in contact with the raised portion of the stamp underwent mechanophore activation, resulting in the generation of patterns that were only visible under UV light. Finally, an isomeric "flex" mechanophore was designed and used to prepare networks that were compressed and compared to the previously described networks.

10.
Curr Biol ; 29(17): 2826-2839.e4, 2019 09 09.
Article in English | MEDLINE | ID: mdl-31402305

ABSTRACT

The nucleoskeleton and cytoskeleton are important protein networks that govern cellular behavior and are connected together by the linker of nucleoskeleton and cytoskeleton (LINC) complex. Mutations in LINC complex components may be relevant to cancer, but how cell-level changes might translate into tissue-level malignancy is unclear. We used glandular epithelial cells in a three-dimensional culture model to investigate the effect of perturbations of the LINC complex on higher order cellular architecture. We show that inducible LINC complex disruption in human mammary epithelial MCF-10A cells and canine kidney epithelial MDCK II cells mechanically destabilizes the acinus. Lumenal collapse occurs because the acinus is unstable to increased mechanical tension that is caused by upregulation of Rho-kinase-dependent non-muscle myosin II motor activity. These findings provide a potential mechanistic explanation for how disruption of LINC complex may contribute to a loss of tissue structure in glandular epithelia.


Subject(s)
Acinar Cells/physiology , Cytoskeleton/physiology , Nuclear Matrix/physiology , Animals , Biomechanical Phenomena , Dogs , Humans , Madin Darby Canine Kidney Cells
11.
Nat Commun ; 10(1): 3029, 2019 07 10.
Article in English | MEDLINE | ID: mdl-31292444

ABSTRACT

With improving biofabrication technology, 3D bioprinted constructs increasingly resemble real tissues. However, the fundamental principles describing how cell-generated forces within these constructs drive deformations, mechanical instabilities, and structural failures have not been established, even for basic biofabricated building blocks. Here we investigate mechanical behaviours of 3D printed microbeams made from living cells and extracellular matrix, bioprinting these simple structural elements into a 3D culture medium made from packed microgels, creating a mechanically controlled environment that allows the beams to evolve under cell-generated forces. By varying the properties of the beams and the surrounding microgel medium, we explore the mechanical behaviours exhibited by these structures. We observe buckling, axial contraction, failure, and total static stability, and we develop mechanical models of cell-ECM microbeam mechanics. We envision these models and their generalizations to other fundamental 3D shapes to facilitate the predictable design of biofabricated structures using simple building blocks in the future.


Subject(s)
Bioprinting/methods , Cell Culture Techniques/methods , Printing, Three-Dimensional , Tissue Engineering/methods , Acrylic Resins/chemistry , Animals , Biocompatible Materials , Cell Line, Tumor , Extracellular Matrix , Gels/chemistry , Materials Testing , Methacrylates/chemistry , Mice , NIH 3T3 Cells
12.
J Cell Biol ; 218(7): 2136-2149, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31147383

ABSTRACT

Cell nuclei rupture following exposure to mechanical force and/or upon weakening of nuclear integrity, but nuclear ruptures are repairable. Barrier-to-autointegration factor (BAF), a small DNA-binding protein, rapidly localizes to nuclear ruptures; however, its role at these rupture sites is unknown. Here, we show that it is predominantly a nonphosphorylated cytoplasmic population of BAF that binds nuclear DNA to rapidly and transiently localize to the sites of nuclear rupture, resulting in BAF accumulation in the nucleus. BAF subsequently recruits transmembrane LEM-domain proteins, causing their accumulation at rupture sites. Loss of BAF impairs recruitment of LEM-domain proteins and nuclear envelope membranes to nuclear rupture sites and prevents nuclear envelope barrier function restoration. Simultaneous depletion of multiple LEM-domain proteins similarly inhibits rupture repair. LEMD2 is required for recruitment of the ESCRT-III membrane repair machinery to ruptures; however, neither LEMD2 nor ESCRT-III is required to repair ruptures. These results reveal a new role for BAF in the response to and repair of nuclear ruptures.


Subject(s)
Cell Nucleus/genetics , Animals , Cytoplasm , DNA-Binding Proteins , Endosomal Sorting Complexes Required for Transport , HEK293 Cells , Humans , Membrane Proteins , Mice , NIH 3T3 Cells , Nuclear Proteins
13.
ACS Appl Bio Mater ; 2(4): 1509-1517, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-35026924

ABSTRACT

The yielding and jamming behaviors of packed granular-scale microgels enable their use as a support medium for 3D printing stable shapes made from liquid phases; under low levels of applied stress, jammed microgel packs behave like elastic solids and provide support to spatially patterned fluid structures. When swollen in cell growth media, these microgels constitute a biomaterial for bioprinting and 3D cell culture applications. However, interactions between polyelectrolytes commonly used in microgels and multivalent ions present in cell growth media may lead to drastic and adverse changes in rheological behavior or cell performance. To elucidate these interactions, we design polyelectrolyte microgels with anionic, cationic, and zwitterionic charged species and investigate their rheological behaviors in CaCl2 solutions. We find the rheological behavior of anionic and cationic microgels follow polyelectrolyte scaling laws near jamming concentrations; the rheological properties of zwitterionic microgels become independent of CaCl2 at high concentrations. We explore the potential application of these microgels as biomaterials for 3D cell culture through studies of short-term cell viability, population growth, and metabolic activity. We find that the short-term viability of cells cultured in polyelectrolytes is highly dependent on the chemical composition of the system. In addition, we find that anionic and zwitterionic microgels have minimal effects on the short-term viability and metabolic activity of cells cultured in microgel environments across a wide range of rheological properties.

14.
ACS Appl Mater Interfaces ; 10(19): 16793-16801, 2018 May 16.
Article in English | MEDLINE | ID: mdl-29726251

ABSTRACT

Reversible covalent chemistry provides access to robust materials with the ability to be degraded and reformed upon exposure to an appropriate stimulus. Photoresponsive units are attractive for this purpose, as the spatial and temporal application of light is easily controlled. Coumarin derivatives undergo a [2 + 2] cycloaddition upon exposure to long-wave UV irradiation (365 nm), and this process can be reversed using short-wave UV light (254 nm). Therefore, polymers cross-linked by coumarin groups are excellent candidates as reversible covalent gels. In this work, copolymerization of coumarin-containing monomers with the hydrophilic comonomer N, N-dimethylacrylamide yielded water-soluble, linear polymers that could be cured with long-wave UV light into free-standing hydrogels, even in the absence of a photoinitiator. Importantly, the gels were reverted back to soluble copolymers upon short-wave UV irradiation. This process could be cycled, allowing for recycling and remolding of the hydrogel into additional shapes. Further, this hydrogel can be imprinted with patterns through a mask-based, post-gelation photoetching method. Traditional limitations of this technique, such as the requirement for uniform etching in one direction, have been overcome by combining these materials with a soft-matter additive manufacturing methodology. In a representative application of this approach, we printed solid structures in which the interior coumarin-cross-linked gel is surrounded by a nondegradable gel. Upon exposure to short-wave UV irradiation, the coumarin-cross-linked gel was reverted to soluble prepolymers that were washed away to yield hollow hydrogel objects.

15.
Soft Matter ; 14(9): 1559-1570, 2018 Feb 28.
Article in English | MEDLINE | ID: mdl-29450413

ABSTRACT

Micro-scale hydrogel particles, known as microgels, are used in industry to control the rheology of numerous different products, and are also used in experimental research to study the origins of jamming and glassy behavior in soft-sphere model systems. At the macro-scale, the rheological behaviour of densely packed microgels has been thoroughly characterized; at the particle-scale, careful investigations of jamming, yielding, and glassy-dynamics have been performed through experiment, theory, and simulation. However, at low packing fractions near jamming, the connection between microgel yielding phenomena and the physics of their constituent polymer chains has not been made. Here we investigate whether basic polymer physics scaling laws predict macroscopic yielding behaviours in packed microgels. We measure the yield stress and cross-over shear-rate in several different anionic microgel systems prepared at packing fractions just above the jamming transition, and show that our data can be predicted from classic polyelectrolyte physics scaling laws. We find that diffusive relaxations of microgel deformation during particle re-arrangements can predict the shear-rate at which microgels yield, and the elastic stress associated with these particle deformations predict the yield stress.

16.
Sci Adv ; 3(5): e1602800, 2017 May.
Article in English | MEDLINE | ID: mdl-28508071

ABSTRACT

The widespread prevalence of commercial products made from microgels illustrates the immense practical value of harnessing the jamming transition; there are countless ways to use soft, solid materials that fluidize and become solid again with small variations in applied stress. The traditional routes of microgel synthesis produce materials that predominantly swell in aqueous solvents or, less often, in aggressive organic solvents, constraining ways that these exceptionally useful materials can be used. For example, aqueous microgels have been used as the foundation of three-dimensional (3D) bioprinting applications, yet the incompatibility of available microgels with nonpolar liquids, such as oils, limits their use in 3D printing with oil-based materials, such as silicone. We present a method to make micro-organogels swollen in mineral oil, using block copolymer self-assembly. The rheological properties of this micro-organogel material can be tuned, leveraging the jamming transition to facilitate its use in 3D printing of silicone structures. We find that the minimum printed feature size can be controlled by the yield stress of the micro-organogel medium, enabling the fabrication of numerous complex silicone structures, including branched perfusable networks and functional fluid pumps.

17.
ACS Biomater Sci Eng ; 2(10): 1787-1795, 2016 Oct 10.
Article in English | MEDLINE | ID: mdl-33440476

ABSTRACT

The demands of tissue engineering have driven a tremendous amount of research effort in 3D tissue culture technology and, more recently, in 3D printing. The need to use 3D tissue culture techniques more broadly in all of cell biology is well-recognized, but the transition to 3D has been impeded by the convenience, effectiveness, and ubiquity of 2D culture materials, assays, and protocols, as well as the lack of 3D counterparts of these tools. Interestingly, progress and discoveries in 3D bioprinting research may provide the technical support needed to grow the practice of 3D culture. Here we investigate an integrated approach for 3D printing multicellular structures while using the same platform for 3D cell culture, experimentation, and assay development. We employ a liquid-like solid (LLS) material made from packed granular-scale microgels, which locally and temporarily fluidizes under the focused application of stress and spontaneously solidifies after the applied stress is removed. These rheological properties enable 3D printing of multicellular structures as well as the growth and expansion of cellular structures or dispersed cells. The transport properties of LLS allow molecular diffusion for the delivery of nutrients or small molecules for fluorescence-based assays. Here, we measure viability of 11 different cell types in the LLS medium, we 3D print numerous structures using several of these cell types, and we explore the transport properties in molecular time-release assays.

SELECTION OF CITATIONS
SEARCH DETAIL
...