Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Eur J Appl Physiol ; 124(6): 1719-1732, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38189826

ABSTRACT

PURPOSE: This study aimed to determine the inter-session reliability of quadriceps neuromuscular function measurements in healthy young and older females. METHODS: Twenty-six females aged 19-74 years completed two identical experimental sessions on different days. Quadriceps neuromuscular function measurements included isometric maximal voluntary force, high- and low-frequency twitch force, voluntary and evoked (H-reflex, M-wave) electromyography (EMG), and estimated maximal torque, velocity and power derived from torque-velocity relationships. Intra-class correlation coefficients (ICCs), coefficients of variation (CoV) and Bland-Altman plots assessed inter-session reliability. The effect of age on reliability was assessed by linear regression. RESULTS: Excellent reliability (ICC > 0.8) was shown for all voluntary and evoked mechanical outcomes. Vastus lateralis EMG outcomes showed excellent reliability (ICC > 0.8) with CoVs < 12%, which were better than those of vastus medialis and rectus femoris. Age was not associated with reliability for 27/28 outcomes (P > 0.05). CONCLUSION: Excellent reliability of voluntary and evoked force and vastus lateralis EMG outcomes measured in healthy females can be attained in one experimental session, irrespective of age. Female neuromuscular function can be accurately assessed across the lifespan with minimal inconvenience, increasing feasibility for future research. The random error should however be considered when quantifying age-related differences in neuromuscular function.


Subject(s)
Quadriceps Muscle , Humans , Female , Middle Aged , Adult , Quadriceps Muscle/physiology , Aged , Reproducibility of Results , Electromyography/methods , Torque , Isometric Contraction/physiology , Young Adult , Aging/physiology , Muscle Strength/physiology
3.
Sports Med ; 52(8): 1939-1960, 2022 08.
Article in English | MEDLINE | ID: mdl-35608815

ABSTRACT

BACKGROUND: Older adults experience considerable muscle and bone loss that are closely interconnected. The efficacy of progressive resistance training programs to concurrently reverse/slow the age-related decline in muscle strength and bone mineral density (BMD) in older adults remains unclear. OBJECTIVES: We aimed to quantify concomitant changes in lower-body muscle strength and BMD in older adults following a progressive resistance training program and to determine how these changes are influenced by mode (resistance only vs. combined resistance and weight-bearing exercises), frequency, volume, load, and program length. METHODS: MEDLINE/PubMed and Embase databases were searched for articles published in English before 1 June, 2021. Randomized controlled trials reporting changes in leg press or knee extension one repetition maximum and femur/hip or lumbar spine BMD following progressive resistance training in men and/or women ≥ 65 years of age were included. A random-effects meta-analysis and meta-regression determined the effects of resistance training and the individual training characteristics on the percent change (∆%) in muscle strength (standardized mean difference) and BMD (mean difference). The quality of the evidence was assessed using the Cochrane risk-of-bias tool (version 2.0) and Grading of Recommendation, Assessment, Development, and Evaluation (GRADE) criteria. RESULTS: Seven hundred and eighty studies were identified and 14 were included. Progressive resistance training increased muscle strength (∆ standardized mean difference = 1.1%; 95% confidence interval 0.73, 1.47; p ≤ 0.001) and femur/hip BMD (∆ mean difference = 2.77%; 95% confidence interval 0.44, 5.10; p = 0.02), but not BMD of the lumbar spine (∆ mean difference = 1.60%; 95% confidence interval - 1.44, 4.63; p = 0.30). The certainty for improvement was greater for muscle strength compared with BMD, evidenced by less heterogeneity (I2 = 78.1% vs 98.6%) and a higher overall quality of evidence. No training characteristic significantly affected both outcomes (p > 0.05), although concomitant increases in strength and BMD were favored by higher training frequencies, increases in strength were favored by resistance only and higher volumes, and increases in BMD were favored by combined resistance plus weight-bearing exercises, lower volumes, and higher loads. CONCLUSIONS: Progressive resistance training programs concomitantly increase lower-limb muscle strength and femur/hip bone mineral density in older adults, with greater certainty for strength improvement. Thus, to maximize the efficacy of progressive resistance training programs to concurrently prevent muscle and bone loss in older adults, it is recommended to incorporate training characteristics more likely to improve BMD.


Subject(s)
Resistance Training , Aged , Bone Density/physiology , Exercise/physiology , Female , Humans , Male , Muscle Strength/physiology , Weight Lifting
5.
Front Sports Act Living ; 3: 797288, 2021.
Article in English | MEDLINE | ID: mdl-35072064

ABSTRACT

Purpose: To investigate how quadriceps muscle fatigue affects power production over the extension and flexion phases and muscle activation during maximal cycling. Methods: Ten participants performed 10-s maximal cycling efforts without fatigue and after 120 bilateral maximal concentric contractions of the quadriceps muscles. Extension power, flexion power and electromyographic (EMG) activity were compared between maximal cycling trials. We also investigated the associations between changes in quadriceps force during isometric maximal voluntary contractions (IMVC) and power output (flexion and extension) during maximal cycling, in addition to inter-individual variability in muscle activation and pedal force profiles. Results: Quadriceps IMVC (-52 ± 21%, P = 0.002), voluntary activation (-24 ± 14%, P < 0.001) and resting twitch amplitude (-45 ± 19%, P = 0.002) were reduced following the fatiguing task, whereas vastus lateralis (P = 0.58) and vastus medialis (P = 0.15) M-wave amplitudes were unchanged. The reductions in extension power (-15 ± 8%, P < 0.001) and flexion power (-24 ± 18%, P < 0.001) recorded during maximal cycling with fatigue of the quadriceps were dissociated from the decreases in quadriceps IMVC. Peak EMG decreased across all muscles while inter-individual variability in pedal force and EMG profiles increased during maximal cycling with quadriceps fatigue. Conclusion: Quadriceps fatigue induced by voluntary contractions led to reduced activation of all lower limb muscles, increased inter-individual variability and decreased power production during maximal cycling. Interestingly, power production was further reduced over the flexion phase (24%) than the extension phase (15%), likely due to larger levels of peripheral fatigue developed in RF muscle and/or a higher contribution of the quadriceps muscle to flexion power production compared to extension power during maximal cycling.

6.
Med Sci Sports Exerc ; 52(3): 685-695, 2020 03.
Article in English | MEDLINE | ID: mdl-31592978

ABSTRACT

PURPOSE: The purpose of this study was to investigate the effectiveness of sports compression tights in reducing muscle movement and activation during running. METHODS: A total of 27 recreationally active males were recruited across two separate studies. For study 1, 13 participants (mean ± SD = 84.1 ± 9.4 kg, 22 ± 3 yr) completed two 4-min treadmill running bouts (2 min at 12 and 15 km·h) under two conditions: a no-compression control (CON1) and compression (COMP). For study 2, 14 participants (77.8 ± 8.4 kg, 27 ± 5 yr) completed four 9-min treadmill running bouts (3 min at 8, 10, and 12 km·h) under four conditions: a no-compression control (CON2) and three different commercially available compression tights (2XU, Nike, and Under Armor). Using Vicon 3D motion capture technology, lower limb muscle displacement was investigated in both study 1 (thigh and calf) and study 2 (vastus lateralis + medialis [VAS]; lateral + medial gastrocnemius [GAS]). In addition, study 2 investigated the effects of compression on soft tissue vibrations (root-mean-square of resultant acceleration, RMS Ar), muscle activation (iEMG), and running economy (oxygen consumption, V˙O2) during treadmill running. RESULTS: Wearing compression during treadmill running reduced thigh and calf muscle displacement as compared with no compression (both studies), which was evident across all running speeds. Compression also reduced RMS Ar and iEMG during treadmill running, but it had no effect on running economy (study 2). CONCLUSION: Lower limb compression garments are effective in reducing muscle displacement, soft tissue vibrations, and muscle activation associated with the impact forces experienced during running.


Subject(s)
Clothing , Muscle, Skeletal/physiology , Running/physiology , Connective Tissue/physiology , Energy Metabolism , Humans , Lower Extremity/physiology , Male , Movement/physiology , Oxygen Consumption , Pressure , Time and Motion Studies , Vibration
7.
J Sports Sci ; 36(9): 1030-1037, 2018 May.
Article in English | MEDLINE | ID: mdl-28718344

ABSTRACT

We investigated the association between changes in vastii electromyography (EMG) and knee extensor fatigue during high-intensity cycling, and the subsequent effect on lower-limb power and intermuscular coordination during all-out cycling. On two separate days, participants completed 30-s all-out cycling or 10-min of high-intensity cycling followed by 30-s all-out cycling. EMG for gluteus maximus (GMAX), rectus femoris (RF), vastii (VAS), hamstrings (HAM) and gastrocnemius (GAS); co-activation for GMAX/RF, VAS/HAM and VAS/GAS; isometric maximal voluntary force (IMVF) and resting twitch (RT) of the knee extensors were measured. VAS EMG increases during high-intensity cycling (6% to 14%, P < 0.05) were negatively correlated (r = -0.791, P < 0.05) with knee extensor IMVF decreases (-2% to-36%, P < 0.05) following the exercise. Knee extensor IMVF decreases were positively correlated (r = 0.757, P < 0.05) with all-out cycling power reductions (0% to -27%, P < 0.05). VAS/GAS co-activation did not change (P > 0.05) during all-out cycling while VAS and GAS EMG decreased. Larger increase in VAS EMG during high-intensity cycling was associated with greater knee extensor fatigue and larger power reduction during all-out cycling. High VAS/GAS co-activation potentially limited power reduction induced by knee extensor fatigue during all-out cycling.


Subject(s)
High-Intensity Interval Training , Knee/physiology , Lower Extremity/physiology , Muscle Fatigue/physiology , Bicycling/physiology , Electromyography , High-Intensity Interval Training/methods , Humans , Perception/physiology , Physical Exertion/physiology
8.
Neurosci Lett ; 576: 11-6, 2014 Jul 25.
Article in English | MEDLINE | ID: mdl-24861507

ABSTRACT

This study investigated the changes in muscle coordination associated to power output decrease during a 30-s isokinetic (120rpm) cycling sprint. Modifications in EMG amplitude and onset/offset were investigated from eight muscles [gluteus maximus (EMGGMAX), vastus lateralis and medialis obliquus (EMGVAS), medial and lateral gastrocnemius (EMGGAS), rectus femoris (EMGRF), biceps femoris and semitendinosus (EMGHAM)]. Changes in co-activation of four muscle pairs (CAIGMAX/GAS, CAIVAS/GAS, CAIVAS/HAM and CAIGMAX/RF) were also calculated. Substantial power reduction (60±6%) was accompanied by a decrease in EMG amplitude for all muscles other than HAM, with the greatest deficit identified for EMGRF (31±16%) and EMGGAS (20±14%). GASonset, HAMonset and GMAXonset shifted later in the pedalling cycle and the EMG offsets of all muscles (except GASoffset) shifted earlier as the sprint progressed (P<0.05). At the end of the sprint, CAIVAS/GAS and CAIGMAX/GAS were reduced by 48±10% and 43±12%, respectively. Our results show that substantial power reduction during fatiguing sprint cycling is accompanied by marked reductions in the EMG activity of bi-articular GAS and RF and co-activation level between GAS and main power producer muscles (GMAX and VAS). The observed changes in RF and GAS EMG activity are likely to result in a redistribution of the joint powers and alterations in the orientation of the pedal forces.


Subject(s)
Bicycling/physiology , Muscle, Skeletal/physiology , Physical Exertion/physiology , Adult , Electromyography , Humans , Leg/physiology , Male , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...