Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Immunol ; 43(7): 1543-1556, 2023 10.
Article in English | MEDLINE | ID: mdl-37246174

ABSTRACT

BACKGROUND: The human CD19 antigen is expressed throughout B cell ontogeny with the exception of neoplastic plasma cells and a subset of normal plasma cells. CD19 plays a role in propagating signals from the B cell receptor and other receptors such as CXCR4 in mature B cells. Studies of CD19-deficient patients have confirmed its function during the initial stages of B cell activation and the production of memory B cells; however, its role in the later stages of B cell differentiation is unclear. OBJECTIVE: Using B cells from a newly identified CD19-deficient individual, we investigated the role of CD19 in the generation and function of plasma cells using an in vitro differentiation model. METHODS: Flow cytometry and long-read nanopore sequencing using locus-specific long-range amplification products were used to screen a patient with suspected primary immunodeficiency. Purified B cells from the patient and healthy controls were activated with CD40L, IL-21, IL-2, and anti-Ig, then transferred to different cytokine conditions to induce plasma cell differentiation. Subsequently, the cells were stimulated with CXCL12 to induce signalling through CXCR4. Phosphorylation of key downstream proteins including ERK and AKT was assessed by Western blotting. RNA-seq was also performed on in vitro differentiating cells. RESULTS: Long-read nanopore sequencing identified the homozygous pathogenic mutation c.622del (p.Ser208Profs*19) which was corroborated by the lack of CD19 cell surface staining. CD19-deficient B cells that are predominantly naïve generate phenotypically normal plasma cells with expected patterns of differentiation-associated genes and normal levels of CXCR4. Differentiated CD19-deficient cells were capable of responding to CXCL12; however, plasma cells derived from naïve B cells, both CD19-deficient and sufficient, had relatively diminished signaling compared to those generated from total B cells. Additionally, CD19 ligation on normal plasma cells results in AKT phosphorylation. CONCLUSION: CD19 is not required for generation of antibody-secreting cells or the responses of these populations to CXCL12, but may alter the response other ligands that require CD19 potentially affecting localization, proliferation, or survival. The observed hypogammaglobulinemia in CD19-deficient individuals is therefore likely attributable to the lack of memory B cells.


Subject(s)
Antigens, CD19 , Plasma Cells , Humans , Plasma Cells/metabolism , Antigens, CD19/genetics , Antigens, CD19/metabolism , Proto-Oncogene Proteins c-akt/metabolism , B-Lymphocytes , Receptors, Antigen, B-Cell , Adaptor Proteins, Signal Transducing/metabolism , Chemokine CXCL12/genetics , Chemokine CXCL12/metabolism
2.
Eur J Heart Fail ; 13(8): 885-91, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21791542

ABSTRACT

AIMS: Previous large-scale, retrospective studies have shown increased mortality in heart failure (HF) patients using ß2-agonists (B2As). We further examined the relationship between B2A use and mortality in a well-characterized population by adjusting for natriuretic peptide levels as a measure of HF severity. METHODS AND RESULTS: This was a retrospective cohort study of patients attending an HF Disease Management Programme with mean follow-up of 2.9 ± 2.4 years. Chart review confirmed B2A use, dose and duration of use, and documented pulmonary function evaluation. The primary endpoint was the effect of B2A use compared with no B2A use on mortality using unadjusted and adjusted Kaplan-Meier survival curves. Data were available for 1294 patients (age 70.6 ± 11.5 years) of whom 64% were male and 22.2% were taking B2As. ß2-Agonist users were older, more likely to be male, to have smoked, to have chronic obstructive pulmonary disease (COPD) and asthma, and less likely to take beta-blockers. Multivariable associates of mortality included: B-type natriuretic peptide (BNP), coronary artery disease, age, and beta-blocker use. Unadjusted mortality rates for B2A users were found to be significantly higher than non-B2A users [hazard ratio (HR) 1.304, 95% confidence interval (CI) 1.030-1.652, P= 0.028]. However, when adjusted for age, sex, medication, co-morbidity, smoking, COPD, and BNP differences, overall mortality rates were similar [HR 1.043, 95% CI (0.771-1.412), P= 0.783]. CONCLUSION: Unlike previous reports, this retrospective evaluation of B2A therapy in HF patients shows no relationship with long-term mortality when adjusted for population differences including BNP.  Large, prospective studies are required to define the risk/benefit ratio of B2As in patients with heart failure.


Subject(s)
Adrenergic beta-2 Receptor Agonists/adverse effects , Heart Failure/mortality , Lung Diseases, Obstructive/drug therapy , Administration, Inhalation , Adrenergic beta-2 Receptor Agonists/administration & dosage , Aged , Aged, 80 and over , Cohort Studies , Female , Heart Failure/complications , Humans , Lung Diseases, Obstructive/complications , Male , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...