Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Eur J Hum Genet ; 32(4): 426-434, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38316953

ABSTRACT

GEMIN5 exerts key biological functions regulating pre-mRNAs intron removal to generate mature mRNAs. A series of patients were reported harboring mutations in GEMIN5. No treatments are currently available for this disease. We treated two of these patients with oral Coenzyme Q10 (CoQ10), which resulted in neurological improvements, although MRI abnormalities remained. Whole Exome Sequencing demonstrated compound heterozygosity at the GEMIN5 gene in both cases: Case one: p.Lys742* and p.Arg1016Cys; Case two: p.Arg1016Cys and p.Ser411Hisfs*6. Functional studies in fibroblasts revealed a decrease in CoQ10 biosynthesis compared to controls. Supplementation with exogenous CoQ10 restored it to control intracellular CoQ10 levels. Mitochondrial function was compromised, as indicated by the decrease in oxygen consumption, restored by CoQ10 supplementation. Transcriptomic analysis of GEMIN5 patients compared with controls showed general repression of genes involved in CoQ10 biosynthesis. In the rigor mortis defective flies, CoQ10 levels were decreased, and CoQ10 supplementation led to an improvement in the adult climbing assay performance, a reduction in the number of motionless flies, and partial restoration of survival. Overall, we report the association between GEMIN5 dysfunction and CoQ10 deficiency for the first time. This association opens the possibility of oral CoQ10 therapy, which is safe and has no observed side effects after long-term therapy.


Subject(s)
Ataxia , Mitochondrial Diseases , Muscle Weakness , Ubiquinone , Ubiquinone/deficiency , Adult , Humans , Ubiquinone/genetics , Ubiquinone/therapeutic use , Ubiquinone/metabolism , Follow-Up Studies , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/genetics , Mutation , SMN Complex Proteins/genetics
3.
Biomed Pharmacother ; 143: 112143, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34507114

ABSTRACT

INTRODUCTION AND OBJECTIVES: Despite the growing interest and the potential benefits of idebenone as a repurposed drug for different orphan conditions, data regarding its monitoring are scarce. Our main goal was to report plasma idebenone values in a cohort of Friedreich's ataxia (FRDA) patients during a long-term follow-up. Taking advantage of this, we also assessed cardiological and neurological status together with idebenone values and genetic background. METHODS: Long-term follow-up retrospective study in 27 FRDA patients with a disease onset at the paediatric age treated with idebenone by compassionate use. Plasma idebenone was measured by HPLC with electrochemical detection. RESULTS: Median plasma idebenone values increased when doses were increased, but apparently linearity was lost in the highest dose group. Marked intraindividual and interindividual differences were observed among patients. We did not find a consistent positive effect after analysis of paired data at the beginning and the end of the study. We only found a correlation between some cardiological measures and the duration of idebenone therapy at high doses, but with uncertain significance. CONCLUSIONS: The large variations observed among the different individuals involved in this study should be considered for optimization of individual dosage regimens.


Subject(s)
Antioxidants/therapeutic use , Drug Monitoring , Friedreich Ataxia/drug therapy , Ubiquinone/analogs & derivatives , Adolescent , Biological Variation, Individual , Biological Variation, Population , Child , Child, Preschool , Chromatography, High Pressure Liquid , Compassionate Use Trials , Electrochemical Techniques , Female , Follow-Up Studies , Friedreich Ataxia/blood , Friedreich Ataxia/diagnosis , Humans , Male , Predictive Value of Tests , Retrospective Studies , Time Factors , Treatment Outcome , Ubiquinone/blood , Ubiquinone/therapeutic use , Young Adult
4.
Clin Chem ; 67(8): 1113-1121, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34352085

ABSTRACT

BACKGROUND: Mitochondrial diseases (MD) are genetic metabolic disorders that impair normal mitochondrial structure or function. The aim of this study was to investigate the status of circulating cell-free mitochondrial DNA (ccfmtDNA) in cerebrospinal fluid (CSF), together with other biomarkers (growth differentiation factor-15 [GDF-15], alanine, and lactate), in a cohort of 25 patients with a molecular diagnosis of MD. METHODS: Measurement of ccfmtDNA was performed by using droplet digital PCR. RESULTS: The mean copy number of ccfmtDNA was approximately 6 times higher in the MD cohort compared to the control group; patients with mitochondrial deletion and depletion syndromes (MDD) had the higher levels. We also detected the presence of both wild-type mtDNA and mtDNA deletions in CSF samples of patients with single deletions. Patients with MDD with single deletions had significantly higher concentrations of GDF-15 in CSF than controls, whereas patients with point mutations in mitochondrial DNA presented no statistically significant differences. Additionally, we found a significant positive correlation between ccfmtDNA levels and GDF-15 concentrations (r = 0.59, P = 0.016). CONCLUSION: CSF ccfmtDNA levels are significantly higher in patients with MD in comparison to controls and, thus, they can be used as a novel biomarker for MD research. Our results could also be valuable to support the clinical outcome assessment of MD patients.


Subject(s)
Cell-Free Nucleic Acids , Mitochondrial Diseases , Biomarkers/cerebrospinal fluid , Cell-Free Nucleic Acids/genetics , DNA, Mitochondrial/genetics , Humans , Mitochondria/genetics , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/genetics
5.
J Inherit Metab Dis ; 43(2): 297-308, 2020 03.
Article in English | MEDLINE | ID: mdl-31339582

ABSTRACT

Transport And Golgi Organization protein 2 (TANGO2) deficiency has recently been identified as a rare metabolic disorder with a distinct clinical and biochemical phenotype of recurrent metabolic crises, hypoglycemia, lactic acidosis, rhabdomyolysis, arrhythmias, and encephalopathy with cognitive decline. We report nine subjects from seven independent families, and we studied muscle histology, respiratory chain enzyme activities in skeletal muscle and proteomic signature of fibroblasts. All nine subjects carried autosomal recessive TANGO2 mutations. Two carried the reported deletion of exons 3 to 9, one homozygous, one heterozygous with a 22q11.21 microdeletion inherited in trans. The other subjects carried three novel homozygous (c.262C>T/p.Arg88*; c.220A>C/p.Thr74Pro; c.380+1G>A), and two further novel heterozygous (c.6_9del/p.Phe6del); c.11-13delTCT/p.Phe5del mutations. Immunoblot analysis detected a significant decrease of TANGO2 protein. Muscle histology showed mild variation of fiber diameter, no ragged-red/cytochrome c oxidase-negative fibers and a defect of multiple respiratory chain enzymes and coenzyme Q10 (CoQ10 ) in two cases, suggesting a possible secondary defect of oxidative phosphorylation. Proteomic analysis in fibroblasts revealed significant changes in components of the mitochondrial fatty acid oxidation, plasma membrane, endoplasmic reticulum-Golgi network and secretory pathways. Clinical presentation of TANGO2 mutations is homogeneous and clinically recognizable. The hemizygous mutations in two patients suggest that some mutations leading to allele loss are difficult to detect. A combined defect of the respiratory chain enzymes and CoQ10 with altered levels of several membrane proteins provides molecular insights into the underlying pathophysiology and may guide rational new therapeutic interventions.


Subject(s)
Brain Diseases, Metabolic/genetics , Mitochondrial Diseases/genetics , Muscle Weakness/genetics , Mutation , Proteomics/methods , Rhabdomyolysis/genetics , Brain Diseases, Metabolic/diagnosis , Fatty Acids/metabolism , Female , Golgi Apparatus/genetics , Golgi Apparatus/metabolism , Homozygote , Humans , Infant , Male , Mitochondrial Diseases/diagnosis , Oxidative Phosphorylation , Phenotype , Rhabdomyolysis/diagnosis , Whole Genome Sequencing
6.
Seizure ; 71: 161-165, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31369919

ABSTRACT

PURPOSE: We present the case of 2 siblings with profound refractory epilepsy and neurological regression that began at the ages of 3 and 6 months. Diagnosis remained elusive despite extensive metabolic and genetic workups, including use of a targeted next-generation sequencing panel for epilepsy genes. METHODS: Whole-exome sequencing was performed for the 2 siblings and their unaffected parents, in addition to fibroblast cell culture, RNA extraction and reverse-transcription, and cDNA PCR. Brain tissue from one of the siblings was collected post-mortem for neuropathological examination, including histology and immunohistochemistry. RESULTS: Ade novo nucleotide change (c.566 T > A; p.(Met189Lys)) in exon 4 of the BSCL2 gene was detected in the 2 siblings, and confirmed by Sanger sequencing. This variant was absent in the parents and in a third, unaffected sibling. CONCLUSION: Given thede novo nature of the variant, its absence from public and in-house databases, our in silico pathogenicity predictions, and co-segregation of the variant with the disease phenotype, we believe that this novel variant is associated with the epileptic encephalopathy phenotype of the 2 siblings. Our findings provide the first evidence of an association between a heterozygous BSCL2 variant and developmental and early infantile epileptic encephalopathy. Further functional studies will be needed to elucidate the pathophysiological mechanisms underlying this new BSCL2-associated phenotype.


Subject(s)
Drug Resistant Epilepsy/diagnosis , GTP-Binding Protein gamma Subunits/genetics , Spasms, Infantile/diagnosis , Child , Drug Resistant Epilepsy/genetics , Drug Resistant Epilepsy/physiopathology , Fatal Outcome , Female , Humans , Infant , Male , Mutation, Missense , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/physiopathology , Pedigree , Siblings , Spasms, Infantile/genetics , Spasms, Infantile/physiopathology , Exome Sequencing
7.
Sci Rep ; 9(1): 793, 2019 01 28.
Article in English | MEDLINE | ID: mdl-30692599

ABSTRACT

Identifying diseases displaying chronic low plasma Coenzyme Q10 (CoQ) values may be important to prevent possible cardiovascular dysfunction. The aim of this study was to retrospectively evaluate plasma CoQ concentrations in a large cohort of pediatric and young adult patients. We evaluated plasma CoQ values in 597 individuals (age range 1 month to 43 years, average 11 years), studied during the period 2005-2016. Patients were classified into 6 different groups: control group of healthy participants, phenylketonuric patients (PKU), patients with mucopolysaccharidoses (MPS), patients with other inborn errors of metabolism (IEM), patients with neurogenetic diseases, and individuals with neurological diseases with no genetic diagnosis. Plasma total CoQ was measured by reverse-phase high-performance liquid chromatography with electrochemical detection and ultraviolet detection at 275 nm. ANOVA with Bonferroni correction showed that plasma CoQ values were significantly lower in the PKU and MPS groups than in controls and neurological patients. The IEM group showed intermediate values that were not significantly different from those of the controls. In PKU patients, the Chi-Square test showed a significant association between having low plasma CoQ values and being classic PKU patients. The percentage of neurogenetic and other neurological patients with low CoQ values was low (below 8%). In conclusión, plasma CoQ monitoring in selected groups of patients with different IEM (especially in PKU and MPS patients, but also in IEM under protein-restricted diets) seems advisable to prevent the possibility of a chronic blood CoQ suboptimal status in such groups of patients.


Subject(s)
Metabolism, Inborn Errors/genetics , Mucopolysaccharidoses/genetics , Nervous System Diseases/blood , Phenylketonurias/genetics , Ubiquinone/analogs & derivatives , Adolescent , Adult , Case-Control Studies , Child , Child, Preschool , Chromatography, High Pressure Liquid , Female , Humans , Infant , Infant, Newborn , Male , Metabolism, Inborn Errors/blood , Mucopolysaccharidoses/blood , Mutation , Nervous System Diseases/genetics , Phenylketonurias/blood , Retrospective Studies , Sequence Analysis, DNA , Ubiquinone/blood , Young Adult
8.
J Clin Med ; 8(1)2019 Jan 10.
Article in English | MEDLINE | ID: mdl-30634555

ABSTRACT

Mitochondrial diseases (MD) are a group of genetic and acquired disorders which present significant diagnostic challenges. Here we report the disease characteristics of a large cohort of pediatric MD patients (n = 95) with a definitive genetic diagnosis, giving special emphasis on clinical muscle involvement, biochemical and histopathological features. Of the whole cohort, 51 patients harbored mutations in nuclear DNA (nDNA) genes and 44 patients had mutations in mitochondrial DNA (mtDNA) genes. The nDNA patients were more likely to have a reduction in muscle fiber succinate dehydrogenase (SDH) stains and in SDH-positive blood vessels, while a higher frequency of mtDNA patients had ragged red (RRF) and blue fibers. The presence of positive histopathological features was associated with ophthalmoplegia, myopathic facies, weakness and exercise intolerance. In 17 patients younger than two years of age, RRF and blue fibers were observed only in one case, six cases presented cytochrome c oxidase (COX) reduction/COX-fibers, SDH reduction was observed in five and all except one presented SDH-positive blood vessels. In conclusion, muscle involvement was a frequent finding in our series of MD patients, especially in those harboring mutations in mtDNA genes.

9.
Front Genet ; 10: 1300, 2019.
Article in English | MEDLINE | ID: mdl-31969900

ABSTRACT

Encephalomyopathic mitochondrial DNA (mtDNA) depletion syndrome 13 (MTDPS13) is a rare genetic disorder caused by defects in F-box leucine-rich repeat protein 4 (FBXL4). Although FBXL4 is essential for the bioenergetic homeostasis of the cell, the precise role of the protein remains unknown. In this study, we report two cases of unrelated patients presenting in the neonatal period with hyperlactacidemia and generalized hypotonia. Severe mtDNA depletion was detected in muscle biopsy in both patients. Genetic analysis showed one patient as having in compound heterozygosis a splice site variant c.858+5G>C and a missense variant c.1510T>C (p.Cys504Arg) in FBXL4. The second patient harbored a frameshift novel variant c.851delC (p.Pro284LeufsTer7) in homozygosis. To validate the pathogenicity of these variants, molecular and biochemical analyses were performed using skin-derived fibroblasts. We observed that the mtDNA depletion was less severe in fibroblasts than in muscle. Interestingly, the cells harboring a nonsense variant in homozygosis showed normal mtDNA copy number. Both patient fibroblasts, however, demonstrated reduced mitochondrial transcript quantity leading to diminished steady state levels of respiratory complex subunits, decreased respiratory complex IV (CIV) activity, and finally, low mitochondrial ATP levels. Both patients also revealed citrate synthase deficiency. Genetic complementation assays established that the deficient phenotype was rescued by the canonical version of FBXL4, confirming the pathological nature of the variants. Further analysis of fibroblasts allowed to establish that increased mitochondrial mass, mitochondrial fragmentation, and augmented autophagy are associated with FBXL4 deficiency in cells, but are probably secondary to a primary metabolic defect affecting oxidative phosphorylation.

10.
Sci Rep ; 7(1): 12288, 2017 09 25.
Article in English | MEDLINE | ID: mdl-28947817

ABSTRACT

Rett syndrome (RTT) is an early-onset neurodevelopmental disorder that almost exclusively affects girls and is totally disabling. Three genes have been identified that cause RTT: MECP2, CDKL5 and FOXG1. However, the etiology of some of RTT patients still remains unknown. Recently, next generation sequencing (NGS) has promoted genetic diagnoses because of the quickness and affordability of the method. To evaluate the usefulness of NGS in genetic diagnosis, we present the genetic study of RTT-like patients using different techniques based on this technology. We studied 1577 patients with RTT-like clinical diagnoses and reviewed patients who were previously studied and thought to have RTT genes by Sanger sequencing. Genetically, 477 of 1577 patients with a RTT-like suspicion have been diagnosed. Positive results were found in 30% by Sanger sequencing, 23% with a custom panel, 24% with a commercial panel and 32% with whole exome sequencing. A genetic study using NGS allows the study of a larger number of genes associated with RTT-like symptoms simultaneously, providing genetic study of a wider group of patients as well as significantly reducing the response time and cost of the study.


Subject(s)
Genetic Testing/methods , High-Throughput Nucleotide Sequencing , Rett Syndrome/diagnosis , Cohort Studies , DNA Copy Number Variations/genetics , Forkhead Transcription Factors/genetics , Humans , Methyl-CpG-Binding Protein 2/genetics , Mutation , Nerve Tissue Proteins/genetics , Polymorphism, Single Nucleotide , Protein Serine-Threonine Kinases/genetics , Rett Syndrome/genetics , Exome Sequencing
11.
Orphanet J Rare Dis ; 12(1): 84, 2017 05 03.
Article in English | MEDLINE | ID: mdl-28468677

ABSTRACT

BACKGROUND: The enzymatic replacement therapy (ERT) availability for Gaucher disease (GD) has changed the landscape of the disease, several countries have screening programs. These actions have promoted the early diagnosis and avoided many complications in pediatric patients. In Spain ERT has been available since 1993 and 386 patients have been included in the Spanish Registry of Gaucher Disease (SpRGD). The aim of this study is to analyze the impact of ERT on the characteristics at time of diagnosis and initial complications in pediatric Gaucher disease patients. AIM: To analyze the impact of ERT on the characteristics at time of diagnosis and initial complications in pediatric Gaucher disease patients. METHODS: A review of data in SpRGD from patients' diagnosed before 18 years old was performed. The cohort was split according the year of diagnosis (≤1994, cohort A; ≥1995, cohort B). RESULTS: A total of 98 pediatric patients were included, GD1: 80, GD3: 18; mean age: 7.2 (0.17-16.5) years, 58 (59.2%) males and 40 (40.8%) females. Forty-five were diagnosed ≤ 1994 and 53 ≥ 1995. Genotype: N370S/N370S: 2 (2.0%), N370S/L444P: 27 (27.5%), N370S/other: 47 (48%), L444P/L444P: 7 (7.1%), L444P/D409H: 2 (2.0%), L444P/other: 3 (6.2%), other/other: 10 (10.2%). The mean age at diagnosis was earlier in patients diagnosed after 1995 (p < 0.001) and different between the subtypes, GD1: 8.2 (0.2-16.5) years and GD3: 2.8 (0.17-10.2) years (p < 0.001). There were more severe patients in the group diagnosed before 1994 (p = 0.045) carrying L444P (2), D409H (2), G377S (1), G195W (1) or the recombinant mutation. The patients' diagnosed ≤1994 showed worse cytopenias, higher chance of bone vascular complications at diagnosis and previous spleen removal. The patients started ERT at a median time after diagnosis of 5.2 years [cohort A] and 1.6 years [cohort B] (p < 0.001). CONCLUSIONS: The early diagnosis of Gaucher disease in the era of ERT availability has permitted to reduce the incidence of severe and irreversible initial complication in pediatric patients, and this has permitted better development of these patients. This is the largest pediatric cohort from a national registry.


Subject(s)
Enzyme Replacement Therapy , Gaucher Disease/diagnosis , Adolescent , Child , Child, Preschool , Enzyme Replacement Therapy/statistics & numerical data , Female , Gaucher Disease/drug therapy , Gaucher Disease/epidemiology , Humans , Infant , Male , Registries , Spain/epidemiology
12.
Medicine (Baltimore) ; 96(19): e6887, 2017 May.
Article in English | MEDLINE | ID: mdl-28489793

ABSTRACT

The mucopolysaccharidoses (MPSs) are underdiagnosed but they are evaluated in few newborn screening programs, probably due to the many challenges remaining, such as the identification of late-onset phenotypes. Systematic screening at the onset of clinical symptoms could help to early identify patients who may benefit from specific treatments. The aim of this prospective study was to assess a novel selective screening program, the FIND project, targeting patients aged 0 to 16 years with clinical manifestations of MPS. The project was designed to increase awareness of these diseases among pediatricians and allow early diagnosis.From July 2014 to June 2016, glycosaminoglycan (GAG) levels normalized to creatinine levels were determined in urine-impregnated analytical paper submitted by pediatricians who had patients with clinical signs and/or symptoms compatible with MPS. When high GAG concentrations were detected, a new liquid urine sample was requested to confirm and identify the GAG present. When a specific form of MPS was suspected, enzyme activity was analyzed using blood-impregnated paper to determine MPS type (I, IIIB, IIIC, IVA, IVB, VI, or VII). Age-specific reference values for GAG were previously established using 145 urine samples from healthy children.GAG levels were normal in 147 (81.7%) of the 180 initial samples received. A liquid sample was requested for the other 33 cases (18.3%); GAG levels were normal in 13 of these and slightly elevated in 12, although the electrophoresis study showed no evidence of MPS. Elevated levels with corresponding low enzymatic activity were confirmed in 8 cases. The mean time from onset of clinical symptoms to detection of MPS was 22 months, and just 2 cases were detected at the beginning of the project were detected with 35 and 71 months of evolution of clinical symptoms. Our screening strategy for MPS had a sensitivity of 100%, a specificity of 85%, and a positive predictive value of 24%.The FIND project is a useful and cost-effective screening method for increasing awareness of MPS among pediatricians and enabling the detection of MPS at onset of clinical symptoms.


Subject(s)
Mass Screening , Mucopolysaccharidoses/diagnosis , Adolescent , Biomarkers/urine , Child , Child, Preschool , Early Diagnosis , Female , Fluorometry , Follow-Up Studies , Glycosaminoglycans/urine , Health Knowledge, Attitudes, Practice , Humans , Infant , Infant, Newborn , Male , Mucopolysaccharidoses/enzymology , Mucopolysaccharidoses/genetics , Mucopolysaccharidoses/urine , Pediatricians , Prospective Studies , Sensitivity and Specificity , Spain
13.
Eur J Hum Genet ; 24(3): 367-72, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26014431

ABSTRACT

Coenzyme Q10 (CoQ10) deficiency is associated to a variety of clinical phenotypes including neuromuscular and nephrotic disorders. We report two unrelated boys presenting encephalopathy, ataxia, and lactic acidosis, who died with necrotic lesions in different areas of brain. Levels of CoQ10 and complex II+III activity were increased in both skeletal muscle and fibroblasts, but it was a consequence of higher mitochondria mass measured as citrate synthase. In fibroblasts, oxygen consumption was also increased, whereas steady state ATP levels were decreased. Antioxidant enzymes such as NQO1 and MnSOD and mitochondrial marker VDAC were overexpressed. Mitochondria recycling markers Fis1 and mitofusin, and mtDNA regulatory Tfam were reduced. Exome sequencing showed mutations in PDHA1 in the first patient and in PDHB in the second. These genes encode subunits of pyruvate dehydrogenase complex (PDH) that could explain the compensatory increase of CoQ10 and a defect of mitochondrial homeostasis. These two cases describe, for the first time, a mitochondrial disease caused by PDH defects associated with unbalanced of both CoQ10 content and mitochondria homeostasis, which severely affects the brain. Both CoQ10 and mitochondria homeostasis appears as new markers for PDH associated mitochondrial disorders.


Subject(s)
Brain Diseases/enzymology , Brain Diseases/genetics , Mutation/genetics , Pyruvate Dehydrogenase Complex/genetics , Ubiquinone/analogs & derivatives , Base Sequence , Child , Child, Preschool , Fatal Outcome , Fibroblasts/pathology , Humans , Infant , Male , Mitochondria, Muscle/metabolism , Molecular Sequence Data , Skin/pathology , Ubiquinone/metabolism
14.
Expert Rev Neurother ; 15(7): 793-802, 2015.
Article in English | MEDLINE | ID: mdl-26092490

ABSTRACT

Cerebral folate deficiency is defined as any neurological condition associated with low cerebrospinal fluid folate concentrations. It is becoming increasingly associated with several neurological diseases, either genetic or environmental. Treatment of cerebral folate deficiency by folate supplementation is generally effective, improving the neurological outcome of some patients. However, to treat cerebral folate deficiency, the proper choice of one of the available folate forms is essential. The distinct brain folate metabolism features compared with peripheral folate metabolic pathways strongly suggest the investigation of different folate forms, such as the biologically active folinic acid and 5-methyltetrahydrofolate, since they are efficiently transported to the brain. Regarding the oral doses of the different folate forms, despite the fact that there are some recommendations, there is no general consensus. Further investigation and designing clinical trials are advisable to elucidate these aspects.


Subject(s)
Cerebellar Diseases/etiology , Cerebellar Diseases/therapy , Folic Acid/metabolism , Vitamin B Deficiency/complications , Humans , Vitamin B Deficiency/metabolism
15.
Cell ; 161(3): 459-469, 2015 Apr 23.
Article in English | MEDLINE | ID: mdl-25910206

ABSTRACT

Mitochondrial diseases include a group of maternally inherited genetic disorders caused by mutations in mtDNA. In most of these patients, mutated mtDNA coexists with wild-type mtDNA, a situation known as mtDNA heteroplasmy. Here, we report on a strategy toward preventing germline transmission of mitochondrial diseases by inducing mtDNA heteroplasmy shift through the selective elimination of mutated mtDNA. As a proof of concept, we took advantage of NZB/BALB heteroplasmic mice, which contain two mtDNA haplotypes, BALB and NZB, and selectively prevented their germline transmission using either mitochondria-targeted restriction endonucleases or TALENs. In addition, we successfully reduced human mutated mtDNA levels responsible for Leber's hereditary optic neuropathy (LHOND), and neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP), in mammalian oocytes using mitochondria-targeted TALEN (mito-TALENs). Our approaches represent a potential therapeutic avenue for preventing the transgenerational transmission of human mitochondrial diseases caused by mutations in mtDNA. PAPERCLIP.


Subject(s)
Gene Targeting , Mitochondrial Diseases/genetics , Animals , Cell Fusion , DNA, Mitochondrial , Embryo, Mammalian/metabolism , Endonucleases/metabolism , Female , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred NZB , Mitochondrial Diseases/prevention & control , Mutation , Oocytes/metabolism
16.
Mitochondrion ; 22: 17-22, 2015 May.
Article in English | MEDLINE | ID: mdl-25765153

ABSTRACT

In this work, we studied the mtDNA mutations m.3243A>G, m.3252A>G, m.15923A>G, m.13513G>A, m.8993T>G and m.9176T>C in the blood, urine and buccal mucosa of a cohort of 27 subjects. Urine cells had the highest mutation load for all of the mtDNA mutations studied. The mutation loads in the blood, urine and the buccal mucosa were significantly higher in the mitochondrial disorder group that manifested clinical signs than in the asymptomatic subjects. In conclusion, urine is a suitable biological sample for molecular diagnosis of mtDNA mutations and for the study of the attendant risk of recurrence in the offspring of asymptomatic mothers identified as non-carriers after mutation analysis in blood.


Subject(s)
Blood Cells/pathology , DNA, Mitochondrial/genetics , Mitochondrial Diseases/pathology , Mouth Mucosa/pathology , Point Mutation , Urine/cytology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Cohort Studies , Female , Humans , Male , Middle Aged , Young Adult
17.
Orphanet J Rare Dis ; 8: 189, 2013 Dec 06.
Article in English | MEDLINE | ID: mdl-24314109

ABSTRACT

BACKGROUND: Mucopolysaccharidosis type III (MPS III), or Sanfilippo syndrome, is caused by a deficiency in one of the four enzymes involved in the lysosomal degradation of heparan sulphate. Four MPS III types have been recognized, characterized by a large phenotypic heterogeneity. This is the first Spanish study describing the natural history of Sanfilippo patients (MPSIIIA, MPSIIIB and MPSIIIC), representing an essential step for understanding patient prognosis and for the establishment and application of future therapies. METHODS: This retrospective study aimed to establish the natural history of MPS III in Spain based on an extensive chronological data survey involving physicians and parents of 55 Spanish MPSIII patients. In addition to clinical description we report biochemical and molecular analysis already performed in the majority of cases. RESULTS: The most frequent subtype was MPS IIIA (62%). Symptoms before diagnosis were speech delay in 85%, followed by coarse facial features in 78%, and hyperactivity in 65% of cases at a mean age of 3 years old. The median age at clinical and biochemical diagnosis for each MPS III subtype were as follows: IIIA 4.4 years (1.2 - 16 years), IIIB 3.1 years (1-29 years), and IIIC 6.3 years (3.4-22 years).45% of patients developed epilepsy at a median age of 8.7 (2.5 - 37) years old.Age of death for MPS IIIA patients was 15 years (11.5 - 26 years).Molecular analysis of our cohort reveals, as alluded to above, a great allelic heterogeneity in the three subtypes without clear genotype-phenotype correlations in most cases. CONCLUSION: MPS IIIA is the most frequent subtype in Spanish Sanfilippo patients. Diagnosing physicians should consider Sanfilippo syndrome in children with non-specific speech delay, behavioural abnormalities, and/or mild dysmorphic features. We stress the importance of establishing early diagnosis procedures as soon as possible so as to be able to determine future short-term enzymatic or gene therapy treatments that can change the prognosis of the disease.


Subject(s)
Mucopolysaccharidosis III/pathology , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Male , Mucopolysaccharidosis III/diagnosis , Retrospective Studies , Young Adult
18.
PLoS One ; 8(7): e68851, 2013.
Article in English | MEDLINE | ID: mdl-23894354

ABSTRACT

OBJECTIVE: Rett Syndrome is a progressive neurodevelopmental disorder caused mainly by mutations in the gene encoding methyl-CpG-binding protein 2. The relevance of MeCP2 for GABAergic function was previously documented in animal models. In these models, animals show deficits in brain-derived neurotrophic factor, which is thought to contribute to the pathogenesis of this disease. Neuronal Cation Chloride Cotransporters (CCCs) play a key role in GABAergic neuronal maturation, and brain-derived neurotrophic factor is implicated in the regulation of CCCs expression during development. Our aim was to analyse the expression of two relevant CCCs, NKCC1 and KCC2, in the cerebrospinal fluid of Rett syndrome patients and compare it with a normal control group. METHODS: The presence of bumetanide sensitive NKCC1 and KCC2 was analysed in cerebrospinal fluid samples from a control pediatric population (1 day to 14 years of life) and from Rett syndrome patients (2 to 19 years of life), by immunoblot analysis. RESULTS: Both proteins were detected in the cerebrospinal fluid and their levels are higher in the early postnatal period. However, Rett syndrome patients showed significantly reduced levels of KCC2 and KCC2/NKCC1 ratio when compared to the control group. CONCLUSIONS: Reduced KCC2/NKCC1 ratio in the cerebrospinal fluid of Rett Syndrome patients suggests a disturbed process of GABAergic neuronal maturation and open up a new therapeutic perspective.


Subject(s)
Rett Syndrome/cerebrospinal fluid , Solute Carrier Family 12, Member 2/cerebrospinal fluid , Symporters/cerebrospinal fluid , Adolescent , Case-Control Studies , Child , Child, Preschool , Female , Gene Expression Regulation , Humans , Infant , Infant, Newborn , Male , Rett Syndrome/genetics , Solute Carrier Family 12, Member 2/genetics , Symporters/genetics , Young Adult , K Cl- Cotransporters
20.
Neurogenetics ; 13(3): 245-50, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22638997

ABSTRACT

The reported cases showed clinical, biochemical, histopathological, and molecular features lending support to the hypothesis of a pathogenic effect of the detected mutations. Case 1 was a neonatal presentation who showed multiple mitochondrial respiratory chain enzyme defects in muscle associated with a new homoplasmic m.5514A > G transition in the tRNA(Trp) gene. Case 2 was a late infantile presentation who also showed mitochondrial respiratory chain enzyme deficiencies in muscle together with a new m.1643A > G tRNA(Val) mutation in homoplasmy. Case 3 showed a MERRF phenotype presented in childhood associated with the once previously reported m.15923A > G mutation in heteroplasmy in all the tissues studied.


Subject(s)
DNA, Mitochondrial/genetics , MERRF Syndrome/genetics , Mitochondrial Diseases/genetics , RNA, Transfer/genetics , Base Sequence , Child , Child, Preschool , Electron Transport , Humans , Infant, Newborn , Mitochondria/metabolism , Molecular Sequence Data , Muscles/pathology , Mutation , Nucleic Acid Conformation , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...