Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Integr Comp Biol ; 63(4): 907-921, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37061788

ABSTRACT

Among extant great apes, orangutans are considered the most sexually dimorphic in body size. However, the expression of sexual dimorphism in orangutans is more complex than simply males being larger than females. At sexual maturity, some male orangutans develop cheek pads (flanges), while other males remain unflanged even after becoming reproductively capable. Sometimes flange development is delayed in otherwise sexually mature males for a few years. In other cases, flange development is delayed for many years or decades, with some males even spending their entire lifespan as unflanged adults. Thus, unflanged males of various chronological ages can be mistakenly identified as "subadults." Unflanged adult males are typically described as "female-sized," but this may simply reflect the fact that unflanged male body size has only ever been measured in peri-pubescent individuals. In this study, we measured the skeletons of 111 wild adult orangutans (Pongo spp.), including 20 unflanged males, 45 flanged males, and 46 females, resulting in the largest skeletal sample of unflanged males yet studied. We assessed long bone lengths (as a proxy for stature) for all 111 individuals and recorded weights-at-death, femoral head diameters, bi-iliac breadths, and long bone cross-sectional areas (CSA) (as proxies for mass) for 27 of these individuals, including seven flanged males, three adult confirmed-unflanged males, and three young adult likely-unflanged males. ANOVA and Kruskal-Wallis tests with Tukey and Dunn post-hoc pairwise comparisons, respectively, showed that body sizes for young adult unflanged males are similar to those of the adult females in the sample (all P ≥ 0.09 except bi-iliac breadth), whereas body sizes for adult unflanged males ranged between those of adult flanged males and adult females for several measurements (all P < 0.001). Thus, sexually mature male orangutans exhibit body sizes that range from the female end of the spectrum to the flanged male end of the spectrum. These results exemplify that the term "sexual dimorphism" fails to capture the full range of variation in adult orangutan body size. By including adult unflanged males in analyses of body size and other aspects of morphology, not as aberrations but as an expected part of orangutan variation, we may begin to shift the way that we think about features typically considered dichotomous according to biological sex.

2.
Sci Rep ; 11(1): 10185, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33986319

ABSTRACT

Pronounced temporal and spatial variation in the availability of food resources can produce energetic deficits in organisms. Fruit-dependent Bornean orangutans face extreme variation in fruit availability and experience negative energy and protein balance during episodes of fruit scarcity. We evaluate the possibility that orangutans of different sexes and ages catabolize muscle tissue when the availability of fruit is low. We assess variation in muscle mass by examining the relationship between urinary creatinine and specific gravity and use the residuals as a non-invasive measure of estimated lean body mass (ELBM). Despite orangutans having a suite of adaptations to buffer them from fruit scarcity and associated caloric deficits, ELBM was lower during low fruit periods in all age-sex classes. As predicted, adult male orangutans had higher ELBM than adult females and immatures. Contrary to expectation, flanged and unflanged males did not differ significantly in ELBM. These findings highlight the precarity of orangutan health in the face of rapid environmental change and add to a growing body of evidence that orangutans are characterized by unique metabolic traits shaped by their unpredictable forest environment.


Subject(s)
Creatine/analysis , Muscle, Skeletal/metabolism , Pongo pygmaeus/metabolism , Animals , Behavior, Animal/physiology , Creatine/urine , Ecosystem , Feeding Behavior/physiology , Female , Food Insecurity , Forests , Fruit , Male , Metabolism/physiology , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiology , Pongo/physiology , Pongo pygmaeus/physiology
3.
Am J Primatol ; 82(11): e23058, 2020 11.
Article in English | MEDLINE | ID: mdl-31583721

ABSTRACT

The primate adolescent period is characterized by a series of changes in physiology, behavior, and social relationships. Orangutans have the slowest life history and the longest period of dependency of all primates. As members of a semisolitary species with high levels of sexual coercion, adolescent female orangutans face a unique combination of challenges when achieving independence from their mother. This study examined the mating behavior of adolescent female orangutans and compared it with that of adult females to assess whether mating behavior reflects distinct strategies at these different points in the life cycle. Data were collected in Gunung Palung National Park on the island of Borneo over 20 years. Mating events from adolescent (n = 19) and adult females (n = 26) were scored and compared. Adolescent female mating events had significantly higher mating scores (indicating more proceptivity) than those of adult females (ß = 1.948, p = .001). Adolescent females also engaged in elaborate sociosexual interactions with different flanged males, behaviors that were never observed during mating events of adult females. These interactions involved characteristic behavior on the part of both the adolescent females and the flanged males. Given these findings and the documentation of similar accounts of adolescent female-flanged male mating from the island of Sumatra, we propose that adolescent female orangutans display distinctive behavioral repertoires throughout the genus Pongo which serves to overcome male ambivalence toward nulliparous females, establish familiarity, and evaluate coercive tendencies in flanged males. We suggest that these behavioral patterns are an integral part of female social development in a female philopatric, but highly dispersed species where consistent social support is absent after ranging independence is achieved.


Subject(s)
Parity , Pongo pygmaeus/physiology , Sexual Behavior, Animal , Age Factors , Animals , Borneo , Female , Male
4.
Sci Rep ; 9(1): 7806, 2019 05 24.
Article in English | MEDLINE | ID: mdl-31127126

ABSTRACT

Infanticide as a male reproductive tactic is widespread across mammals, and is particularly prevalent in catarrhine primates. While it has never been observed in wild orangutans, infanticide by non-sire males has been predicted to occur due to their extremely long inter-birth intervals, semi-solitary social structure, and the presence of female counter-tactics to infanticide. Here, we report on the disappearance of a healthy four-month-old infant, along with a serious foot injury suffered by the primiparous mother. No other cases of infant mortality have been observed at this site in 30 years of study. Using photographic measurements of the injury, and information on the behavior and bite size of potential predators, we evaluate the possible causes of this injury. The context, including the behavior of the female and the presence of a new male at the time of the injury, lead us to conclude that the most likely cause of the infant loss and maternal injury was male infanticide. We suggest that in orangutans, and other species where nulliparous females are not preferred mates, these females may be less successful at using paternity confusion as an infanticide avoidance tactic, thus increasing the likelihood of infanticide of their first-born infants.


Subject(s)
Animals, Wild , Pongo , Aggression , Animals , Animals, Newborn , Animals, Wild/physiology , Behavior, Animal , Female , Male , Pongo/physiology , Reproduction
5.
J Hum Evol ; 65(2): 156-61, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23815827

ABSTRACT

Brain development in Homo erectus is a subject of great interest, and the infant calvaria from Mojokerto, Indonesia, has featured prominently in these debates. Some researchers have suggested that the pattern of brain development in H. erectus resembled that of non-human apes, while others argue for a more human-like growth pattern. In this study, we retested hypotheses regarding brain ontogeny in H. erectus using new methods (resampling), and data from additional H. erectus crania. Our results reveal that humans achieve 62% (±10%) and chimpanzees 80% (±9%) of their adult endocranial volume by 0.5-1.5 years of age. Using brain mass data, humans achieve on average 65% and chimpanzees 81% of adult size by 0.5-1.5 years. When compared with adult H. erectus crania (n = 9) from Indonesian sites greater than 1.2 million years old, Mojokerto had reached ∼70% of its adult cranial capacity. Mojokerto thus falls almost directly between the average growth in humans and chimpanzees, and well within the range of both. We therefore suggest that brain development in H. erectus cannot be dichotomized as either ape-like or human-like; it was H. erectus-like. These data indicate that H. erectus may have had a unique developmental pattern that should be considered as an important step along the continuum of brain ontogeny between apes and humans.


Subject(s)
Biological Evolution , Brain/growth & development , Fossils , Hominidae/growth & development , Skull/growth & development , Animals , Humans , Indonesia , Pan troglodytes/growth & development , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...