Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 131(21): 218101, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38072592

ABSTRACT

We investigate the drying of isolated polymer solution droplets, employing acoustic levitation, and demonstrate the spontaneous generation of breath figures (BF) on the resulting polymer particles and capsules (∼5-1000 µm) with controlled surface pore arrays (<1-20 µm). By contrast with supported polymer thin films, the evaporative cooling experienced by suspended droplets suffices to yield ubiquitous BF formation, owing to their thermal insulation and the synchronous condensation and self-assembly of water microdroplets, accompanied by capsule skin formation and kinetic arrest. A simple model describes simultaneously the radius and temperature evolution along the droplet-to-particle transformation, and the scaling of surface pore dimensions, with environmental parameters. The generality of the approach is demonstrated with a range of model polymers, and the coupled roles of solution thermodynamics and droplet environment are shown to permit the facile design of capsules with tunable transport and dissolution kinetics.

2.
Lab Chip ; 23(11): 2540-2552, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37185587

ABSTRACT

We report the coupling of dynamic light scattering (DLS) in microfluidics, using a contact-free fibre-optic system, enabling the under-flow characterisation of a range of solutions, dispersions, and structured fluids. The system is evaluated and validated with model systems, specifically micellar and (dilute) polymer solutions, and colloidal dispersions of different radii (∼1-100 nm). A systematic method of flow-DLS analysis is examined as a function of flow velocity (0-16 cm s-1), and considerations of the relative contribution of 'transit' and 'Brownian' terms enable the identification of regions where (i) a quiescent approximation suffices, (ii) the flow-DLS framework holds, as well as (iii) where deviations are found, until eventually (iv) the convection dominates. We investigate practically relevant, robust setups, namely that of a capillary connected to microdevice, as well as direct measurement on a glass microdevice, examining the role of capillary dimensions and challenges of optical alignment. We conclude with a demonstration of a continuous flow measurement of a binary surfactant/salt solution, whose micellar dimensions vary with composition, characterised with hundreds of data points (every ∼5 s) and adequate statistics, within a few minutes.

3.
Macromolecules ; 55(3): 1050-1059, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35431332

ABSTRACT

We investigate the conformation of poly(2,6-diphenyl-p-phenylene oxide) (PPPO) in good and mixed solvents by small-angle neutron scattering (SANS) across its ternary phase diagram. Dichloromethane was selected as a "good" solvent and heptane as a "poor" solvent whose addition eventually induces demixing and polymer precipitation. Below the overlap concentration c*, the polymer conformation is found to be well described by the polymer-excluded volume model and above by the Ornstein-Zernike expression with a correlation length ξ which depends on the concentration and solvent/nonsolvent ratio. We quantify the decrease in polymer radius of gyration R g , increase in ξ, and effective χ parameter approaching the phase boundary. Upon flash nanoprecipitation, the characteristic particle radius (estimated by scanning electron microscopy, SEM) is found to scale with polymer concentration as well as with nonsolvent content. Significantly, the solution volume per precipitated particle remains nearly constant at all polymer concentrations. Overall, our findings correlate ternary solution structure with the fabrication of polymer nanoparticles by nonsolvent-induced phase separation and precipitation.

4.
Gels ; 7(2)2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33921260

ABSTRACT

Hydrogel microparticles (HMPs) find numerous practical applications, ranging from drug delivery to tissue engineering. Designing HMPs from the molecular to macroscopic scales is required to exploit their full potential as functional materials. Here, we explore the gelation of sodium carboxymethyl cellulose (NaCMC), a model anionic polyelectrolyte, with Fe3+ cations in water. Gelation front kinetics are first established using 1D microfluidic experiments, and effective diffusive coefficients are found to increase with Fe3+ concentration and decrease with NaCMC concentrations. We use Fourier Transform Infrared Spectroscopy (FTIR) to elucidate the Fe3+-NaCMC gelation mechanism and small angle neutron scattering (SANS) to spatio-temporally resolve the solution-to-network structure during front propagation. We find that the polyelectrolyte chain cross-section remains largely unperturbed by gelation and identify three hierarchical structural features at larger length scales. Equipped with the understanding of gelation mechanism and kinetics, using microfluidics, we illustrate the fabrication of range of HMP particles with prescribed morphologies.

SELECTION OF CITATIONS
SEARCH DETAIL
...