Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 106(4): 2498-2509, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36797180

ABSTRACT

Precision livestock farming (PLF) technologies have been widely promoted as important tools to improve the sustainability of dairy systems due to perceived economic, social, and environmental benefits. However, there is still limited information about the level of adoption of PLF technologies (percentage of farms with a PLF technology) and the factors (farm and farmer characteristics) associated with PLF technology adoption in pasture-based dairy systems. The current research aimed to address this knowledge gap by using a representative survey of Irish pasture-based dairy farms from 2018. First, we established the levels of adoption of 9 PLF technologies (individual cow activity sensors, rising plate meters, automatic washers, automatic cluster removers, automatic calf feeders, automatic parlor feeders, automatic drafting gates, milk meters, and a grassland management decision-support tool) and grouped them into 4 PLF technology clusters according to the level of association with each other and the area of dairy farm management in which they are used. The PLF technology clusters were reproductive management technologies, grass management technologies, milking management technologies, and calf management technologies. Additionally, we classified farms into 3 categories of intensity of technology adoption based on the number of PLF technologies they have adopted (nonadoption, low intensity of adoption, and high intensity of adoption). Second, we determined the factors associated with the intensity of technology adoption and with the adoption of the PLF technology clusters. A multinomial logistic regression model and 4 logistic regressions were used to determine the factors associated with intensity of adoption (low and high intensity of adoption compared with nonadoption) and with the adoption of the 4 PLF technology clusters, respectively. Adoption levels varied depending on PLF technology, with the most adopted PLF technologies being those related to the milking process (e.g., automatic parlor feeders and milk meters). The results of the multinomial logistic regression suggest that herd size, proportion of hired labor, agricultural education, and discussion group membership were positively associated with a high intensity of adoption, whereas age of farmer and number of household members were negatively associated with high intensity of adoption. However, when analyzing PLF technology clusters, the magnitude and direction of the influence of the factors in technology adoption varied depending on the PLF technology cluster being investigated. By identifying the PLF technologies in which pasture-based dairy farmers are investing more and by detecting potential drivers and barriers for the adoption of PLF technologies, the current study could allow PLF technology companies, practitioners, and researchers to develop and target strategies that improve future adoption of PLF technologies in pasture-based dairy settings.


Subject(s)
Dairying , Livestock , Female , Cattle , Animals , Farms , Dairying/methods , Agriculture , Technology , Milk
2.
J Dairy Sci ; 106(2): 1218-1232, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36460509

ABSTRACT

Moderate to severe forms of suboptimal mobility on dairy cows are associated with yield losses, whereas mild forms of suboptimal mobility are associated with elevated somatic cell count and an increased risk to be culled. Although the economic consequences of severe forms of suboptimal mobility (also referred as clinical lameness) have been studied extensively, the mild forms are generally ignored. Therefore, the aim of the current study was to determine the economic consequences associated with varying prevalence and forms of suboptimal mobility within spring calving, pasture-based dairy herds. A new submodel predicting mobility scores was developed and integrated within an existing pastured-based herd dynamic model. Using a daily timestep, this model simulates claw disorders, and the consequent mobility score of individual cows. The impact of a cow having varying forms of suboptimal mobility on production and reproduction was simulated. The economic impact was simulated including treatment costs, as well as the production and reproductive impacts of varying levels of suboptimal mobility. Furthermore, different genetic predispositions for mobility issues and their interaction with herd-level management associated with each level of suboptimal mobility were simulated. Overall, 13 scenarios were simulated, representing a typical spring calving, pasture-based dairy herd with 100 cows. The first scenario represents a perfect herd wherein 100% of the cows had mobility score 0 (optimal mobility) throughout the lactation. The remaining 12 scenarios represent a combination of (1) 3 different herd-management levels, and (2) 4 different levels of a genetic predisposition for suboptimal mobility. The analysis showed that a 17% decrease in farm net profit was achieved in the worst outcome (wherein just 5% of the herd had optimal mobility) compared with the perfect herd. This was due to reduced milk yield, increased culling, and increased treatment costs for mobility issues compared the ideal scenario.


Subject(s)
Cattle Diseases , Dairying , Female , Cattle , Animals , Reproduction , Lactation , Milk , Costs and Cost Analysis , Cattle Diseases/etiology
3.
J Dairy Sci ; 103(10): 9238-9249, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32773316

ABSTRACT

Lameness in dairy cows can have significant effects on cow welfare, farm profitability, and the environment. To determine the economic and environmental consequences of lameness, we first need to quantify its effect on performance. The objective of this study, therefore, was to determine the associations of various production and reproductive performance measurements (including milk, fat, and protein yield, somatic cell count, calving interval, cow death, or cow slaughter), and mobility scores in spring-calving, pasture-based dairy cows. We collected mobility scores (0 = good, 1 = imperfect, 2 = impaired, and 3 = severely impaired mobility), body condition scores, and production data for 11,116 cows from 68 pasture-based dairy herds. Linear mixed modeling was used to determine the associations between specific mobility scores and milk, fat and protein yield, and somatic cell count and calving interval. Binomial logistic regression was used to determine the association between mobility score and cow death, or slaughter. Significant yield losses of up to 1.4% of the average yield were associated with mobility score 2 and yield losses of up to 4.7% were associated with mobility score 3 during the early scoring period. Elevated somatic cell count was associated with all levels of suboptimal mobility during the late scoring period. Cows with a mobility score of 2 during the early scoring period were associated with longer calving interval length, whereas only cows with a mobility score of 3 during the late scoring period were associated with longer calving interval length. Cows with a mobility score ≥1 were more likely to be culled during both scoring periods. Our study, therefore, shows an association between specific mobility scores and production and reproductive performance in spring-calving, pasture-based dairy cows scored during the summer grazing period.


Subject(s)
Cattle Diseases , Dairying , Herbivory , Reproduction , Animals , Cattle , Cattle Diseases/metabolism , Dairying/economics , Female , Lactation , Lameness, Animal , Logistic Models , Milk , Seasons
4.
Prev Vet Med ; 181: 105077, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32653490

ABSTRACT

Lameness in dairy cows is an area of concern from an economic, environmental and animal welfare point of view. While the potential risk factors associated with suboptimal mobility in non-pasture-based systems are evident throughout the literature, the same information is less abundant for pasture-based systems specifically those coupled with seasonal calving, like those in Ireland. Therefore, the objective of this study was to determine the potential risk factors associated with specific mobility scores (0 = good, 1 = imperfect, 2 = impaired, and 3 = severely impaired mobility) for pasture-based dairy cows. Various cow and herd-level potential risk factors from Irish pasture-based systems were collected and analyzed for their association with suboptimal mobility, whereby a mobility score of 0 refers to cows with optimal mobility and a mobility score ≥ 1 refers to a cow with some form of suboptimal mobility. Combined cow and herd-level statistical models were used to determine the increased or decreased risk for mobility score 1, 2, and 3 (any form of suboptimal mobility) compared to the risk for mobility score 0 (optimal mobility), as the outcome variable and the various potential risk factors at both the cow and herd-level were included as predictor type variables. Cow-level variables included body condition score, milk yield, genetic predicted transmitting ability for 'lameness', somatic cell score, calving month and cow breed. Herd-level variables included various environmental and management practices on farm. These analyses have identified several cow-level potential risk factors (including low body condition score, high milk yield, elevated somatic cell count, stage of lactation, calving month, and certain breed types), as well as various herd-level potential risk factors (including the amount of time taken to complete the milking process, claw trimmer training, farm layout factors and foot bathing practices) which are associated with suboptimal mobility. The results of this study should be considered by farm advisors when advising and implementing a cow/herd health program for dairy cows in pasture-based systems.


Subject(s)
Cattle Diseases/epidemiology , Lameness, Animal/epidemiology , Animals , Cattle , Female , Ireland/epidemiology , Locomotion , Risk Factors , Seasons
5.
J Dairy Sci ; 103(5): 3895-3911, 2020 May.
Article in English | MEDLINE | ID: mdl-32113761

ABSTRACT

Locomotion scoring is time consuming and is not commonly completed on farms. Farmers also underestimate their herds' lameness prevalence, a knowledge gap that impedes lameness management. Automation of lameness detection could address this knowledge gap and facilitate improved lameness management. The literature pertinent to adding lameness detection to accelerometers is reviewed in this paper. Options for lameness detection systems are examined including the choice of sensor, raw data collected, variables extracted, and statistical classification methods used. Two categories of variables derived from accelerometer-based systems are examined. These categories are behavior measures such as lying and measures of gait. For example, one measure of gait is the time a leg is swinging during a gait cycle. Some behavior-focused studies have reported accuracy levels of greater than 80%. Cow gait measures have been investigated to a lesser extent than behavior. However, classification accuracies as high as 91% using gait measures have been reported with hardware likely to be practical for commercial farms. The need for even higher accuracy and potential barriers to adoption are discussed. Significant progress is still required to realize a system with sufficient specificity and sensitivity. Lameness detection systems using 1 accelerometer per cow and a resolution lower than 100 Hz with gait measurement functions are suggested to balance cost and data requirements. However, gait measurement using accelerometers is rather underdeveloped. Therefore, a high priority should be given to the development of novel gait measures and testing their ability to differentiate lame from nonlame cows.


Subject(s)
Accelerometry/veterinary , Cattle Diseases/diagnosis , Dairying , Lameness, Animal/diagnosis , Animals , Behavior, Animal , Cattle , Dairying/methods
6.
J Dairy Sci ; 102(9): 8332-8342, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31301835

ABSTRACT

The quality of dairy cow mobility can have significant welfare, economic, and environmental consequences that have yet to be extensively quantified for pasture-based systems. The objective of this study was to characterize mobility quality by examining associations between specific mobility scores, claw disorders (both the type and severity), body condition score (BCS), and cow parity. Data were collected for 6,927 cows from 52 pasture-based dairy herds, including mobility score (0 = optimal mobility; 1, 2, or 3 = increasing severities of suboptimal mobility), claw disorder type and severity, BCS, and cow parity. Multinomial logistic regression was used for analysis. The outcome variable was mobility score, and the predictor variables were BCS, type and severity of claw disorders, and cow parity. Three models were run, each with 1 reference category (mobility score 0, 1, or 2). Each model also included claw disorders (overgrown claw, sole hemorrhage, white line disease, sole ulcer, and digital dermatitis), BCS, and cow parity as predictor variables. The presence of most types of claw disorders had odds ratios >1, indicating an increased likelihood of a cow having suboptimal mobility. Low BCS (BCS <3.00) was associated with an increased risk of a cow having suboptimal mobility, and relatively higher parity was also associated with an increased risk of suboptimal mobility. These results confirm an association between claw disorders, BCS, cow parity, and dairy cow mobility score. Therefore, mobility score should be routinely practiced to identify cows with slight deviations from the optimal mobility pattern and to take preventive measures to keep the problem from worsening.


Subject(s)
Cattle Diseases/physiopathology , Dairying , Lameness, Animal/physiopathology , Locomotion , Animals , Cattle , Cattle Diseases/etiology , Female , Foot Diseases/physiopathology , Foot Diseases/veterinary , Lameness, Animal/etiology , Logistic Models , Odds Ratio , Parity , Pregnancy , Risk Factors , Walking
SELECTION OF CITATIONS
SEARCH DETAIL
...