Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cryst Growth Des ; 23(9): 6275-6289, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-38173900

ABSTRACT

Crystal structure prediction (CSP) is performed for the energetic materials (EMs) LLM-105 and α-RDX, as well as the α and ß conformational polymorphs of 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX), using the genetic algorithm (GA) code, GAtor, and its associated random structure generator, Genarris. Genarris and GAtor successfully generate the experimental structures of all targets. GAtor's symmetric crossover scheme, where the space group symmetries of parent structures are treated as genes inherited by offspring, is found to be particularly effective. However, conducting several GA runs with different settings is still important for achieving diverse samplings of the potential energy surface. For LLM-105 and α-RDX, the experimental structure is ranked as the most stable, with all of the dispersion-inclusive density functional theory (DFT) methods used here. For HMX, the α form was persistently ranked as more stable than the ß form, in contrast to experimental observations, even when correcting for vibrational contributions and thermal expansion. This may be attributed to insufficient accuracy of dispersion-inclusive DFT methods or to kinetic effects not considered here. In general, the ranking of some putative structures is found to be sensitive to the choice of the DFT functional and the dispersion method. For LLM-105, GAtor generates a putative structure with a layered packing motif, which is desirable thanks to its correlation with low sensitivity. Our results demonstrate that CSP is a useful tool for studying the ubiquitous polymorphism of EMs and shows promise of becoming an integral part of the EM development pipeline.

2.
J Chem Theory Comput ; 18(7): 4456-4471, 2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35759249

ABSTRACT

Molecular crystals of energetic materials (EMs) are denser than typical molecular crystals and are characterized by distinct intermolecular interactions between nitrogen-containing moieties. To assess the performance of dispersion-inclusive density functional theory (DFT) methods, we have compiled a data set of experimental sublimation enthalpies of 31 energetic materials. We evaluate the performance of three methods: the semilocal Perdew-Burke-Ernzerhof (PBE) functional coupled with the pairwise Tkatchenko-Scheffler (TS) dispersion correction, PBE with the many-body dispersion (MBD) method, and the PBE-based hybrid functional (PBE0) with MBD. Zero-point energy contributions and thermal effects are described using the quasi-harmonic approximation (QHA), including explicit treatment of thermal expansion, which we find to be non-negligible for EMs. The lattice energies obtained with PBE0+MBD are the closest to experimental sublimation enthalpies with a mean absolute error of 9.89 kJ/mol. However, the state-of-the-art treatment of vibrational and thermal contributions makes the agreement with experiment worse. Pressure-volume curves are also examined for six representative materials. For pressure-volume curves, all three methods provide reasonable agreement with experimental data with mean absolute relative errors of 3% or less. Most of the intermolecular interactions typical of EMs, namely nitro-amine, nitro-nitro, and nitro-hydrogen interactions, are more sensitive to the choice of the dispersion method than to the choice of the exchange-correlation functional. The exception is π-π stacking interactions, which are also very sensitive to the choice of the functional. Overall, we find that PBE+TS, PBE+MBD, and PBE0+MBD do not perform as well for energetic materials as previously reported for other classes of molecular crystals. This highlights the importance of testing dispersion-inclusive DFT methods for diverse classes of materials and the need for further method development.

SELECTION OF CITATIONS
SEARCH DETAIL
...