Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Diabetes Complications ; 36(1): 108098, 2022 01.
Article in English | MEDLINE | ID: mdl-34887186

ABSTRACT

AIMS: We tested the hypotheses that exercise training improves the peak and dynamic responses of leg vascular conductance (LVC) in males and females with type 2 diabetes (T2DM). METHODS: Forty-one males and females with T2DM were assigned to two training groups and two control groups. Twelve weeks of aerobic/resistance training was performed three times per week, 60-90 min per session. Responses of calf muscle blood flow and systemic arterial pressure during incremental and constant-load (30% maximal voluntary contraction) intermittent plantar-flexion protocols in the supine position were recorded. RESULTS: Training significantly increased peak LVC in males (4.86 ± 1.88 to 6.06 ± 2.06 ml·min-1·mm Hg-1) and females (3.91 ± 1.13 to 5.40 ± 1.38 ml·min-1·mm Hg-1) with no changes in control groups. For dynamic responses, training significantly increased the amplitude of the fast growth phase of LVC (1.81 ± 1.12 to 2.68 ± 1.01 ml·min-1·mm Hg-1) and decreased the time constant of the slow growth phase (43.6 ± 46.4 s to 16.1 14.0 s) in females, but no improvements were observed in control females or in any of the two male groups. CONCLUSIONS: These data suggest that training increases the peak vasodilatory response in males and females, whereas the speed of the dynamic response of vasodilation is improved in females but not males.


Subject(s)
Diabetes Mellitus, Type 2 , Vasodilation , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/therapy , Exercise/physiology , Female , Humans , Leg/blood supply , Male , Muscle, Skeletal , Regional Blood Flow/physiology
2.
Appl Physiol Nutr Metab ; 45(8): 865-874, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32134683

ABSTRACT

Effects of training and sex on oxygen uptake dynamics during exercise in type 2 diabetes mellitus (T2DM) are not well established. We tested the hypotheses that exercise training improves the time constant of the primary phase of oxygen uptake (τp oxygen uptake) and with greater effect in males than females. Forty-one subjects with T2DM were assigned to 2 training groups (Tmale, Tfemale) and 2 control groups (Cmale, Cfemale), and were assessed before and after a 12-week intervention period. Twelve weeks of aerobic/resistance training was performed 3 times per week, 60-90 min per session. Assessments included ventilatory threshold (VT), peak oxygen uptake, τp oxygen uptake (80%VT), and dynamic responses of cardiac output, mean arterial pressure and systemic vascular conductance (80%VT). Training significantly decreased τp oxygen uptake in males by a mean of 20% (Tmale = 42.7 ± 6.2 to 34.3 ± 7.2 s) and females by a mean of 16% (Tfemale = 42.2 ± 9.3 to 35.4 ± 8.6 s); whereas τp oxygen uptake was not affected in controls (Cmale = 41.6 ± 9.8 to 42.9 ± 7.6 s; Cfemale = 40.4 ± 12.2 to 40.6 ± 13.4 s). Training increased peak oxygen uptake in both sexes (12%-13%) but did not alter systemic cardiovascular dynamics in either sex. Training improved oxygen uptake dynamics to a similar extent in males and females in the absence of changes in systemic cardiovascular dynamics. Novelty Similar training improvements in oxygen uptake dynamics were observed in males and females with T2DM. In both sexes these improvements occurred without changes in systemic cardiovascular dynamics.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Exercise , Oxygen Consumption , Resistance Training , Aged , Blood Pressure , Cardiac Output , Cardiovascular System , Female , Heart Rate , Humans , Male , Middle Aged
3.
Am J Physiol Regul Integr Comp Physiol ; 309(8): R875-83, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26269520

ABSTRACT

We investigated if the magnitude of the Type 2 diabetes (T2D)-induced impairments in peak oxygen uptake (V̇O2) and V̇O2 kinetics was affected by menopausal status. Twenty-two women with T2D (8 premenopausal, 14 postmenopausal), and 22 nondiabetic (ND) women (11 premenopausal, 11 postmenopausal) matched by age (range = 30-59 yr) were recruited. Participants completed four bouts of constant-load cycling at 80% of their ventilatory threshold for the determination of V̇O2 kinetics. Cardiac output (CO) (inert gas rebreathing) was recorded at rest and at 30 s and 240 s during two additional bouts. Peak V̇O2 was significantly (P < 0.05) reduced in both groups with T2D compared with ND counterparts (premenopausal, 1.79 ± 0.16 vs. 1.55 ± 0.32 l/min; postmenopausal, 1.60 ± 0.30 vs. 1.45 ± 0.24 l/min). The time constant of phase II of the V̇O2 response was slowed (P < 0.05) in both groups with T2D compared with healthy counterparts (premenopausal, 29.1 ± 11.2 vs. 43.0 ± 12.2 s; postmenopausal, 33.0 ± 9.1 vs. 41.8 ± 17.7 s). At rest and during submaximal exercise absolute CO responses were lower, but the "gains" in CO larger (both P < 0.05) in both groups with T2D. Our results suggest that the magnitude of T2D-induced impairments in peak V̇O2 and V̇O2 kinetics is not affected by menopausal status in participants younger than 60 yr of age.


Subject(s)
Diabetes Mellitus, Type 2 , Exercise/physiology , Menopause , Oxygen Consumption/physiology , Adult , Case-Control Studies , Exercise Test , Female , Humans , Kinetics , Middle Aged
4.
J Appl Physiol (1985) ; 118(8): 1031-9, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25701005

ABSTRACT

We investigated if the magnitude of the type 2 diabetes (T2D)-induced impairments in peak oxygen uptake (V̇o2) and V̇o2 kinetics was affected by age. Thirty-three men with T2D (15 middle-aged, 18 older), and 21 nondiabetic (ND) men (11 middle-aged, 10 older) matched by age were recruited. Participants completed four 6-min bouts of constant-load cycling at 80% ventilatory threshold for the determination of V̇o2 kinetics. Cardiac output (inert-gas rebreathing) was recorded at rest and 30 and 240 s during two additional bouts. Peak V̇o2 (determined from a separate graded test) was significantly (P < 0.05) reduced in middle-aged and older men with T2D compared with their respective ND counterparts (middle-aged, 3.2 ± 0.5 vs. 2.5 ± 0.5 l/min; older, 2.7 ± 0.4 vs. 2.4 ± 0.4 l/min), and the magnitude of these impairments was not affected by age. However, the time constant of phase II of the V̇o2 response was only slowed (P < 0.05) in middle-aged men with T2D compared with healthy counterparts, whereas it was similar among older men with and without T2D (middle-aged, 26.8 ± 9.3 vs. 41.6 ± 12.1 s; older, 40.5 ± 7.8 vs. 41.1 ± 8.5 s). Similarly, the "gains" in systemic vascular conductance (estimated from the slope between cardiac output and mean arterial pressure responses) were lower (P < 0.05) in middle-aged men with T2D than ND controls, but similar between the older groups. The results suggest that the mechanisms by which T2D induces significant reductions in peak exercise performance are linked to a slower dynamic response of V̇o2 and reduced systemic vascular conductance responses in middle-aged men, whereas this is not the case in older men.


Subject(s)
Aging/physiology , Diabetes Mellitus, Type 2/physiopathology , Exercise/physiology , Oxygen Consumption , Pulmonary Gas Exchange , Adult , Aged , Blood Pressure , Cardiac Output , Case-Control Studies , Exercise Test , Heart Rate , Humans , Male , Middle Aged
5.
J Appl Physiol (1985) ; 117(7): 755-64, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25123197

ABSTRACT

We tested the hypotheses that type 2 diabetes (T2D) impairs the 1) leg hemodynamic responses to an incremental intermittent plantar-flexion exercise and 2) dynamic responses of leg vascular conductance (LVC) during low-intensity (30% maximal voluntary contraction, MVC) and high-intensity (70% MVC) constant-load plantar-flexion exercise in the supine posture. Forty-four middle-aged individuals with T2D (14 women), and 35 healthy nondiabetic (ND) individuals (18 women) were tested. Leg blood flow (LBF) was measured between each contraction using venous occlusion plethysmography. During the incremental test peak force (Fpeak) relative to MVC was significantly reduced (P < 0.05) in men and women with T2D compared with their respective nondiabetic counterparts. Peak LBF and the slope of LBF relative to percentage Fpeak were also reduced (P < 0.05) in women with T2D compared with healthy women (peak blood flow, 460.6 ± 126.8 vs. 628.3 ± 347.7 ml/min; slope, 3.78 ± 1.74 vs. 5.85 ± 3.14 ml·min(-1)·%Fpeak (-1)) and in men with T2D compared with nondiabetic men (peak blood flow, 621.7 ± 241.3 vs. 721.2 ± 359.7 ml/min; slope, 5.75 ± 2.66 vs. 6.33 ± 3.63 ml·min(-1)·%Fpeak (-1)). During constant-load contractions at 30% MVC T2D did not affect the dynamic responses of LVC (LBF/MAP). However, at 70% MVC [completed by a subgroup of participants (20 with T2D, 6 women; 13 ND, 6 women)] the time constant of the second growth phase of LVC was longer and the amplitude of the first growth phase was lower (P < 0.05 for both) in men and women with T2D. The results suggest that the T2D-induced impairments in performance of the leg muscles are related to reductions in blood flow in both men and women.


Subject(s)
Diabetes Mellitus, Type 2/physiopathology , Exercise/physiology , Hemodynamics/physiology , Leg/blood supply , Regional Blood Flow/physiology , Adult , Aged , Female , Humans , Male , Middle Aged , Muscle Contraction/physiology , Muscle, Skeletal/physiopathology , Oxygen Consumption/physiology
6.
Nutr J ; 12: 110, 2013 Aug 06.
Article in English | MEDLINE | ID: mdl-23915093

ABSTRACT

BACKGROUND: A number of dietary quality indices (DQIs) have been developed to assess the quality of dietary intake. Analysis of the intake of individual nutrients does not reflect the complexity of dietary behaviours and their association with health and disease. The aim of this study was to determine the dietary quality of individuals with type 2 diabetes mellitus (T2DM) using a variety of validated DQIs. METHODS: In this cross-sectional analysis of 111 Caucasian adults, 65 cases with T2DM were recruited from the Diabetes Day Care Services of St. Columcille's and St. Vincent's Hospitals, Dublin, Ireland. Forty-six controls did not have T2DM and were recruited from the general population. Data from 3-day estimated diet diaries were used to calculate 4 DQIs. RESULTS: Participants with T2DM had a significantly lower score for consumption of a Mediterranean dietary pattern compared to the control group, measured using the Mediterranean Diet Score (Range 0-9) and the Alternate Mediterranean Diet Score (Range 0-9) (mean ± SD) (3.4 ± 1.3 vs 4.8 ± 1.8, P < 0.001 and 3.3 ± 1.5 vs 4.2 ± 1.8, P = 0.02 respectively). Participants with T2DM also had lower dietary quality than the control population as assessed by the Healthy Diet Indicator (Range 0-9) (T2DM; 2.6 ± 2.3, control; 3.3 ± 1.1, P = 0.001). No differences between the two groups were found when dietary quality was assessed using the Alternate Healthy Eating Index. Micronutrient intake was assessed using the Micronutrient Adequacy Score (Range 0-8) and participants with T2DM had a significantly lower score than the control group (T2DM; 1.6 ± 1.4, control; 2.3 ± 1.4, P = 0.009). When individual nutrient intakes were assessed, no significant differences were observed in macronutrient intake. CONCLUSION: Overall, these findings demonstrate that T2DM was associated with a lower score when dietary quality was assessed using a number of validated indices.


Subject(s)
Diabetes Mellitus, Type 2/diet therapy , Energy Intake , Feeding Behavior , Food Quality , Adult , Aged , Blood Glucose/analysis , Body Mass Index , Case-Control Studies , Cross-Sectional Studies , Diet Records , Diet, Mediterranean , Fasting , Female , Humans , Ireland , Male , Micronutrients/administration & dosage , Middle Aged , Nutrition Assessment , Triglycerides/blood
7.
Am J Physiol Regul Integr Comp Physiol ; 303(1): R70-6, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22538515

ABSTRACT

The present study tested the hypothesis that the magnitude of the type 2 diabetes-induced impairments in peak oxygen uptake (Vo(2)) and Vo(2) kinetics would be greater in females than males in middle-aged participants. Thirty-two individuals with type 2 diabetes (16 male, 16 female), and 32 age- and body mass index (BMI)-matched healthy individuals (16 male, 16 female) were recruited. Initially, the ventilatory threshold (VT) and peak Vo(2) were determined. On a separate day, subjects completed four 6-min bouts of constant-load cycling at 80% VT for the determination of Vo(2) kinetics using standard procedures. Cardiac output (CO) (inert gas rebreathing) was recorded at rest, 30, and 240 s during two additional bouts. Peak Vo(2) (ml·kg(-1)·min(-1)) was significantly reduced in men and women with type 2 diabetes compared with their respective nondiabetic counterparts (men, 27.8 ± 4.4 vs. 31.1 ± 6.2 ml·kg(-1)·min(-1); women, 19.4 ± 4.1 vs. 21.4 ± 2.9 ml·kg(-1)·min(-1)). The time constant (s) of phase 2 (τ(2)) and mean response time (s) of the Vo(2) response (MRT) were slowed in women with type 2 diabetes compared with healthy women (τ(2), 43.3 ± 9.8 vs. 33.6 ± 10.0 s; MRT, 51.7 ± 9.4 vs. 43.5 ± 11.4s) and in men with type 2 diabetes compared with nondiabetic men (τ(2), 43.8 ± 12.0 vs. 35.3 ± 9.5 s; MRT, 57.6 ± 8.3 vs. 47.3 ± 9.3 s). The magnitude of these impairments was not different between males and females. The steady-state CO responses or the dynamic responses of CO were not affected by type 2 diabetes among men or women. The results suggest that the type 2 diabetes-induced impairments in peak Vo(2) and Vo(2) kinetics are not affected by sex in middle aged participants.


Subject(s)
Diabetes Mellitus, Type 2/physiopathology , Exercise/physiology , Oxygen Consumption/physiology , Adult , Aged , Cardiac Output/physiology , Case-Control Studies , Female , Heart Rate/physiology , Humans , Male , Middle Aged , Sex Characteristics
SELECTION OF CITATIONS
SEARCH DETAIL
...