Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Fish Biol ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38483100

ABSTRACT

Anguillid eel populations are under threat globally. A particularly vulnerable life-cycle stage is the migration of mature adult eels downstream from freshwater habitats through estuaries into the sea to spawn. This study investigated the factors associated with downstream migration of the short-finned eel Anguilla australis (Richardson 1841) from a coastal wetland (Lake Condah) in south-east Australia, using acoustic telemetry. Migration was associated with time of the year, higher water level and river flows, decreasing water temperature, and darker moon phases. Larger individuals and those in better condition were more likely to migrate from the wetland. Downstream migration peaked in spring, in contrast to the typical autumn migration period for other temperate anguillids. Variable responses, in comparison to other studies, highlight how migration cues may not be universal. In south-east Australia, short-finned eels may have evolved to migrate in multiple phases by first migrating to the estuary during typical seasonal spring flow pulses (e.g., to avoid being stranded in upland reaches during dry summer periods) and then migrating into the ocean in autumn. More research is needed to unravel these processes and causes, especially considering that the relationship between migration and hydrology may be complex and confounded (e.g., by human-induced disruptions to migratory pathways).

2.
J Cell Biol ; 222(2)2023 02 06.
Article in English | MEDLINE | ID: mdl-36469001

ABSTRACT

Volume electron microscopy is an important imaging modality in contemporary cell biology. Identification of intracellular structures is a laborious process limiting the effective use of this potentially powerful tool. We resolved this bottleneck with automated segmentation of intracellular substructures in electron microscopy (ASEM), a new pipeline to train a convolutional neural network to detect structures of a wide range in size and complexity. We obtained dedicated models for each structure based on a small number of sparsely annotated ground truth images from only one or two cells. Model generalization was improved with a rapid, computationally effective strategy to refine a trained model by including a few additional annotations. We identified mitochondria, Golgi apparatus, endoplasmic reticulum, nuclear pore complexes, caveolae, clathrin-coated pits, and vesicles imaged by focused ion beam scanning electron microscopy. We uncovered a wide range of membrane-nuclear pore diameters within a single cell and derived morphological metrics from clathrin-coated pits and vesicles, consistent with the classical constant-growth assembly model.


Subject(s)
Image Processing, Computer-Assisted , Microscopy, Electron , Neural Networks, Computer , Clathrin , Endoplasmic Reticulum/ultrastructure , Golgi Apparatus/ultrastructure , Microscopy, Electron/methods , Mitochondria/ultrastructure , Nuclear Pore/ultrastructure , Caveolae/ultrastructure , Cell Biology
3.
Sci Rep ; 11(1): 22976, 2021 11 26.
Article in English | MEDLINE | ID: mdl-34836978

ABSTRACT

Anguillid eel populations have declined dramatically over the last 50 years in many regions of the world, and numerous species are now under threat. A critical life-history phase is migration from freshwater to distant oceans, culminating in a single life-time spawning event. For many anguillids, especially those in the southern hemisphere, mystery still shrouds their oceanic spawning migrations. We investigated the oceanic spawning migrations of the Australasian short-finned eel (Anguilla australis) using pop-up satellite archival tags. Eels were collected from river estuaries (38° S, 142° E) in south-eastern temperate Australia. In 2019, 16 eels were tracked for up to about 5 months, ~ 2620 km from release, and as far north as the tropical Coral Sea (22° S, 155° E) off the north-east coast of Australia. Eels from southern Australia appeared to access deep water off the Australian coast via two main routes: (i) directly east via Bass Strait, or (ii) south-east around Tasmania, which is the shortest route to deep water. Tagged eels exhibited strong diel vertical migrations, alternating between the warm euphotic zone (~ 100-300 m, 15-20 °C) at night and the mesopelagic zone (~ 700-900 m, 6-8 °C) during the day. Marine predators, probably lamnid sharks, tuna, or marine mammals, ended many eel migrations (at least ~ 30%), largely before the eels had left the Australian continental shelf. The long and risky marine migrations of Australasian eels highlight the need for better information on the processes contributing to eel mortality throughout the life cycle, including the impacts of future changes to oceanic currents, predator abundance and direct anthropogenic disturbances.


Subject(s)
Anguilla/physiology , Animal Migration/physiology , Environment , Reproduction , Animals , Australia , Oceans and Seas
4.
J Fish Biol ; 99(1): 61-72, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33580711

ABSTRACT

Anthropogenic alterations to river flow regimes threaten freshwater biodiversity globally, with potentially disproportionate impacts on species that rely on flow cues to trigger critical life history processes, such as migration for diadromous fishes. This study investigates the influence of river discharge on the abundance of juvenile fish moving into rivers by four temperate catadromous or amphidromous species (common galaxias Galaxias maculatus, spotted galaxias Galaxias truttaceus, climbing galaxias Galaxias brevipinnis and the threatened Australian grayling Prototroctes maraena). Fyke netting or fishway trapping was used to catch juvenile fish moving from estuaries into freshwater in five coastal waterways in south-eastern Australia during the spring migratory period. There was a positive relationship between the probability of high catch rates and mean discharge in September. We also found a positive relationship between discharge and the number of recruits captured 22-30 days later in a flow stressed system. In addition, day-of-year had a strong influence on catch rates, with the peak abundance of juveniles for three species most likely to occur midway through the sampling period (spotted galaxias in October, climbing galaxias in late October and Australian grayling in late October and early November). Our study shows that higher magnitudes of river discharge were associated with increased catches of juvenile catadromous and amphidromous fishes. With a limited supply of environmental water, environmental flows used to enhance immigration of these fishes may be best targeted to maintain small amounts of immigration into freshwater populations in waterways or years when discharges are low and stable. When there are natural, large discharge volumes, relatively large numbers of juvenile fish can be expected to enter coastal waterways and during these times environmental flows may not be required to promote immigration.


Subject(s)
Rivers , Salmonidae , Animals , Australia , Emigration and Immigration , Fishes , Fresh Water
SELECTION OF CITATIONS
SEARCH DETAIL
...