Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 84(2): 934-948, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30582335

ABSTRACT

The development of efficient and modular synthetic methods for the synthesis of diverse collection of privileged substructures needed for a drug design and discovery campaign is highly desirable. Benzoxazepine and indolopyrazine ring systems form the core structures of distinct members of biologically significant molecules. Several members of these families have gained attention due to their broad biological activities, which depend on the type of ring-fusion and peripheral substitution patterns. Despite the potential applications of these privileged substructures in drug discovery, efficient, atom-economic, and modular strategies for their access are underdeveloped. Herein, a one-step build/couple/pair strategy that uniquely allows access to diversely functionalized benzoxazepine and indolopyrazine scaffolds is described. The methodology features a one-pot combination of condensation, Mannich, oxidation, and aza-Michael addition reactions, employing a variety of functionalized anilines and aldehydes suitably poised with Micheal acceptor. Scandium triflate (Sc(OTf)3) in acetonitrile (ACN) was found to promote the construction of benzoxazepines scaffolds, while sodium metabisulfite (Na2S2O5) in aqueous EtOH rapidly enhanced the cascade reaction that led to diverse collections of indolopyrazine frameworks. These protocols represent modular, efficient, and atom-economic access of constrained benzoxazepine and indolopyrazine systems with more than 10 points of diversity and large substrate tolerance.

2.
Nat Commun ; 9(1): 4989, 2018 11 26.
Article in English | MEDLINE | ID: mdl-30478283

ABSTRACT

Octahydroindolo[2,3-a]quinolizine ring system forms the basic framework comprised of more than 2000 distinct family members of natural products. Despite the potential applications of this privileged substructure in drug discovery, efficient, atom-economic and modular strategies for its assembly, is underdeveloped. Here we show a one-step build/couple/pair strategy that uniquely allows access to diverse octahydroindolo[2,3-a]quinolizine scaffolds with more than three contiguous chiral centers and broad distribution of molecular shapes via desymmetrization of the oxidative-dearomatization products of phenols. The cascade demonstrates excellent diastereoselectivity, and the enantioselectivity exceeded 99% when amino acids are used as chiral reagents. Furthermore, two diastereoselective reactions for the synthesis of oxocanes and piperazinones, is reported. Phenotypic screening of the octahydroindolo[2,3-a]quinolizine library identifies small molecule probes that selectively suppress mitochondrial membrane potential, ATP contents and elevate the ROS contents in hepatoma cells (Hepa1-6) without altering the immunological activation or reprogramming of T- and B-cells, a promising approach to cancer therapy.


Subject(s)
Biological Products/chemistry , Quinazolines/chemistry , Oxidation-Reduction , Phenotype , Piperazines/chemistry , Quinazolines/chemical synthesis , Stereoisomerism
3.
Org Lett ; 20(3): 836-839, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29327591

ABSTRACT

Employing a build/couple/pair strategy, a serendipitous one-pot protocol for the diastereoselective construction of diverse collections of chromenopyrroles is described. This methodology features an unprecedented five-step cascade including azomethine ylide generation followed by in situ intramolecular [3 + 2]-cycloaddition. Furthermore, this protocol was extended to access enantiopure chromenopyrroles using amino acids as chiral auxiliary. Moreover, postpairing reactions were employed to increase the diversity and complexity of our pilot compound collections.

4.
Chemistry ; 23(57): 14182-14192, 2017 Oct 12.
Article in English | MEDLINE | ID: mdl-28770556

ABSTRACT

The development of robust and efficient strategies to access structurally diverse drug-like compound collections remains an important challenge for small molecule probe development and drug discovery. Following a build/couple/pair strategy we have established bidirectional approach to unprecedented benzoxazepines by employing a Pictet-Spengler/aza-Michael addition cascade and Schiff base/aza-Michael addition/reduction protocols, respectively. The corresponding ß-carboline-fused benzoxazepines and peripherally substituted benzoxazepines are isolated in high diastereoselectivity, good to excellent yields and have, to the best of our knowledge, never been reported.

5.
Chemistry ; 23(17): 4137-4148, 2017 Mar 23.
Article in English | MEDLINE | ID: mdl-27997727

ABSTRACT

Phenotype-based screening of diverse compound collections generated by privileged substructure-based diversity-oriented synthesis (pDOS) is considered one of the prominent approaches in the discovery of novel drug leads. However, one key challenge that remains is the development of efficient and modular synthetic routes toward the facile access of privileged small-molecule libraries with skeletal and stereochemical complexity and drug-like properties. In this regard, a novel and diverse one-pot procedure for the diastereoselective synthesis of privileged polycyclic benzopyrans and benzoxepines is described herein. These unexplored chemotypes were accessed by utilizing an acid-mediated diaza-Diels-Alder reaction of 2-allyloxy- and/or homoallyloxy benzaldehyde with 2-aminoazine building blocks. Profiling of representative analogues against blood-stage Plasmodium falciparum parasites identified three lead candidates with low micromolar antimalarial activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...