Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
1.
Nutr Clin Pract ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38877983

ABSTRACT

BACKGROUND: Body mass index (BMI) is criticized for being unjust and biased in relatively healthy racial and ethnic groups. Therefore, the current analysis examines if BMI predicts body composition, specifically adiposity, in a racially and ethnically diverse acutely ill patient population. METHODS: Patients admitted with SARS-CoV-2 having an evaluable diagnostic chest, abdomen, and/or pelvic computed tomography (CT) study (within 5 days of admission) were included in this retrospective cohort. Cross-sectional areas (centimeters squared) of the subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and intramuscular adipose tissue (IMAT) were quantified. Total adipose tissue (TAT) was calculated as sum of these areas. Admission height and weight were applied to calculate BMI, and self-reported race and ethnicity were used for classification. General linear regression models were conducted to estimate correlations and assess differences between groups. RESULTS: On average, patients (n = 134) were aged 58.2 (SD = 19.1) years, 60% male, and racially and ethnically diverse (33% non-Hispanic White [NHW], 33% non-Hispanic Black [NHB], 34% Hispanic). Correlations between BMI and SAT and BMI and TAT were strongest revealing estimates of 0.707 (0.585, 0.829) and 0.633 (0.534, 0.792), respectively. When examining the various adiposity compartments across race and ethnicity, correlations were similar and significant differences were not detected for TAT with SAT, VAT, or IMAT (all P ≥ 0.05). CONCLUSIONS: These findings support the routine use of applying BMI as a proxy measure of total adiposity for acutely ill patients identifying as NHW, NHB, and Hispanic. Our results inform the validity and utility of this tool in clinical nutrition practice.

2.
Antibiotics (Basel) ; 13(4)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38667016

ABSTRACT

Staphylococcus aureus is frequently highlighted as a priority for novel drug research due to its pathogenicity and ability to develop antibiotic resistance. Coagulase-negative staphylococci (CoNS) are resident flora of the skin and nares. Previous studies have confirmed their ability to kill and prevent colonization by S. aureus through the production of bioactive substances. This study screened a bank of 37 CoNS for their ability to inhibit the growth of methicillin-resistant S. aureus (MRSA). Deferred antagonism assays, growth curves, and antibiofilm testing performed with the cell-free supernatant derived from overnight CoNS cultures indicated antimicrobial and antibiofilm effects against MRSA indicators. Whole genome sequencing and BAGEL4 analysis of 11 CoNS isolates shortlisted for the inhibitory effects they displayed against MRSA led to the identification of two strains possessing complete putative bacteriocin operons. The operons were predicted to encode a nukacin variant and a novel epilancin variant. From this point, strains Staphylococcus hominis C14 and Staphylococcus epidermidis C33 became the focus of the investigation. Through HPLC, a peptide identical to previously characterized nukacin KQU-131 and a novel epilancin variant were isolated from cultures of C14 and C33, respectively. Mass spectrometry confirmed the presence of each peptide in the active fractions. Spot-on-lawn assays demonstrated both bacteriocins could inhibit the growth of an MRSA indicator. The identification of natural products with clinically relevant activity is important in today's climate of escalating antimicrobial resistance and a depleting antibiotic pipeline. These findings also highlight the prospective role CoNS may play as a source of bioactive substances with activity against critical pathogens.

3.
Sci Rep ; 14(1): 9469, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38658583

ABSTRACT

Bovine mastitis caused by S. aureus has a major economic impact on the dairy sector. With the crucial need for new therapies, anti-virulence strategies have gained attention as alternatives to antibiotics. Here we aimed to identify novel compounds that inhibit the production/activity of hemolysins, a virulence factor of S. aureus associated with mastitis severity. We screened Bacillus strains obtained from diverse sources for compounds showing anti-hemolytic activity. Our results demonstrate that lipopeptides produced by Bacillus spp. completely prevented the hemolytic activity of S. aureus at certain concentrations. Following purification, both iturins, fengycins, and surfactins were able to reduce hemolysis caused by S. aureus, with iturins showing the highest anti-hemolytic activity (up to 76% reduction). The lipopeptides showed an effect at the post-translational level. Molecular docking simulations demonstrated that these compounds can bind to hemolysin, possibly interfering with enzyme action. Lastly, molecular dynamics analysis indicated general stability of important residues for hemolysin activity as well as the presence of hydrogen bonds between iturins and these residues, with longevous interactions. Our data reveals, for the first time, an anti-hemolytic activity of lipopeptides and highlights the potential application of iturins as an anti-virulence therapy to control bovine mastitis caused by S. aureus.


Subject(s)
Bacillus , Hemolysin Proteins , Hemolysis , Lipopeptides , Molecular Docking Simulation , Staphylococcus aureus , Bacillus/metabolism , Bacillus/chemistry , Staphylococcus aureus/drug effects , Hemolysis/drug effects , Animals , Cattle , Lipopeptides/pharmacology , Lipopeptides/chemistry , Hemolysin Proteins/antagonists & inhibitors , Hemolysin Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Mastitis, Bovine/microbiology , Mastitis, Bovine/drug therapy , Female , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemistry , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Molecular Dynamics Simulation
4.
Int J Pharm ; 654: 123918, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38401875

ABSTRACT

Thuricin CD is a two-peptide antimicrobial produced by Bacillus thuringiensis. Unlike previous antibiotics, it has shown narrow spectrum activity against Clostridioides difficile, a bacterium capable of causing infectious disease in the colon. However, peptide antibiotics have stability, solubility, and permeability problems that can affect their performance in vivo. This work focuses on the bioactivity and bioavailability of thuricin CD with a view to developing a formulation for delivery of active thuricin CD peptides through the gastrointestinal tract (GIT) for local delivery in the colon. The results indicate that thuricin CD is active at low concentrations only when both peptides are present. While thuricin CD was degraded by proteases and was unstable and poorly soluble in gastric fluid, it showed increased solubility in intestinal fluid, probably due to micelle encapsulation. Based on this, thuricin CD was encapsulated in anionic liposomes, which showed increased activity compared to the free peptide, maintained activity after exposure to pepsin in gastric fluid and intestinal fluid, was stable in suspension for over 21 days at room temperature and for 60 days at 4 °C, and exhibited no toxicity to epithelial intestinal cells. These findings suggest that an anionic lipid-based nano formulation may be a promising approach for local oral delivery of thuricin CD.


Subject(s)
Bacteriocins , Liposomes , Antimicrobial Peptides , Anti-Bacterial Agents/pharmacology
5.
Front Microbiol ; 14: 1290697, 2023.
Article in English | MEDLINE | ID: mdl-38143858

ABSTRACT

Bacteriocins are antimicrobial peptides that have been studied for decades as food bio-preservatives or as alternatives to antibiotics. They also have potential as modulators of the gut microbiome, which has been linked to human health. However, it is difficult to predict a priori how bacteriocins will impact complex microbial communities through direct and indirect effects. Here we assess the effect of different bacteriocin-producing strains on a Simplified Human Intestinal Microbiota (SIHUMI) model, using a set of bacteriocin-producing strains (Bac+) and otherwise isogenic non-producers (Bac-). Bacteriocins from different classes and with different activity spectra were selected, including lantibiotics such as lacticin 3147 and nisin A, and pediocin-like bacteriocins such as pediocin PA-1 among other peptides. SIHUMI is a bacterial consortium of seven diverse human gut species that assembles to a predictable final composition in a particular growth medium. Each member can be individually tracked by qPCR. Bac+ and Bac- strains were superimposed on the SIHUMI system, and samples were taken at intervals up to 48 h. The genome copy number of each SIHUMI member was evaluated using specific primers. We establish that the composition of the community changes in response to the presence of either broad- or narrow-spectrum bacteriocin producers and confirm that there are significant off-target effects. These effects were analyzed considering antagonistic inter-species interactions within the SIHUMI community, providing a comprehensive insight into the possible mechanisms by which complex communities can be shaped by bacteriocins.

6.
Int J Food Microbiol ; 403: 110341, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37543003

ABSTRACT

In order to meet consumers´ demands for more natural foods and to find new methods to control foodborne pathogens in them, research is currently being focused on alternative preservation approaches, such as biopreservation with lactic acid bacteria (LAB). Here, a collection of lactic acid bacteria (LAB) isolates was characterized to identify potential biopreservative agents. Six isolates (one Lactococcus lactis, one Lacticaseibacillus paracasei and four Lactiplantibacillus plantarum) were selected based on their antimicrobial activity in in vitro assays. Whole genome sequencing showed that none of the six LAB isolates carried known virulence factors or acquired antimicrobial resistance genes, and that the L. lactis isolate was potentially a nisin Z producer. Growth of L. monocytogenes was successfully limited by L. lactis ULE383, L. paracasei ULE721 and L. plantarum ULE1599 throughout the shelf-life of cooked ham, meatloaf and roasted pork shoulder. These LAB isolates were also applied individually or as a cocktail at different inoculum concentrations (4, 6 and 8 log10 CFU/g) in challenge test studies involving cooked ham, showing a stronger anti-Listerial activity when a cocktail was used at 8 log10 CFU/g. Thus, a reduction of up to ~5.0 log10 CFU/g in L. monocytogenes growth potential was attained in cooked ham packaged under vacuum, modified atmosphere packaging or vacuum followed by high pressure processing (HPP). Only minor changes in color and texture were induced, although there was a significant acidification of the product when the LAB cultures were applied. Remarkably, this acidification was delayed when HPP was applied to the LAB inoculated batches. Metataxonomic analyses showed that the LAB cocktail was able to grow in the cooked ham and outcompete the indigenous microbiota, including spoilage microorganisms such as Brochothrix. Moreover, none of the batches were considered unacceptable in a sensory evaluation. Overall, this study shows the favourable antilisterial activity of the cocktail of LAB employed, with the combination of HPP and LAB achieving a complete inhibition of the pathogen with no detrimental effects in physico-chemical or sensorial evaluations, highlighting the usefulness of biopreservation approaches involving LAB for enhancing the safety of cooked meat products.


Subject(s)
Lactobacillales , Listeria monocytogenes , Meat Products , Meat Products/microbiology , Food Microbiology , Food Preservation/methods , Vacuum , Colony Count, Microbial , Food Packaging/methods
7.
Nutr Clin Pract ; 38(5): 1009-1020, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37312258

ABSTRACT

BACKGROUND: Patients with low muscle mass and acute SARS-CoV-2 infection meet the Global Leadership Initiative on Malnutrition (GLIM) etiologic and phenotypic criteria to diagnose malnutrition, respectively. However, available cut-points to classify individuals with low muscle mass are not straightforward. Using computed tomography (CT) to determine low muscularity, we assessed the prevalence of malnutrition using the GLIM framework and associations with clinical outcomes. METHODS: A retrospective cohort was conducted gathering patient data from various clinical resources. Patients admitted to the COVID-19 unit (March 2020 to June 2020) with appropriate/evaluable CT studies (chest or abdomen/pelvis) within the first 5 days of admission were considered eligible. Sex- and vertebral-specific skeletal muscle indices (SMI; cm2 /m2 ) from healthy controls were used to determine low muscle mass. Injury-adjusted SMI were derived, extrapolated from cancer cut-points and explored. Descriptive statistics and mediation analyses were completed. RESULTS: Patients (n = 141) were 58.2 years of age and racially diverse. Obesity (46%), diabetes (40%), and cardiovascular disease (68%) were prevalent. Using healthy controls and injury-adjusted SMI, malnutrition prevalence was 26% (n = 36/141) and 50% (n = 71/141), respectively. Mediation analyses demonstrated a significant reduction in the effect of malnutrition on outcomes in the presence of Acute Physiology and Chronic Health Evaluation II, supporting the mediating effects of severity of illness intensive care unit (ICU) admission, ICU length of stay, mechanical ventilation, complex respiratory support, discharge status (all P values = 0.03), and 28-day mortality (P = 0.04). CONCLUSIONS: Future studies involving the GLIM criteria should consider these collective findings in their design, analyses, and implementation.


Subject(s)
COVID-19 , Malnutrition , Humans , Leadership , Retrospective Studies , COVID-19/epidemiology , SARS-CoV-2 , Tomography, X-Ray Computed , Malnutrition/diagnosis , Malnutrition/epidemiology , Nutrition Assessment , Nutritional Status
8.
Sci Rep ; 13(1): 7899, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37193715

ABSTRACT

Nisin is a broad spectrum bacteriocin used extensively as a food preservative that was identified in Lactococcus lactis nearly a century ago. We show that orally-ingested nisin survives transit through the porcine gastrointestinal tract intact (as evidenced by activity and molecular weight determination) where it impacts both the composition and functioning of the microbiota. Specifically, nisin treatment caused a reversible decrease in Gram positive bacteria, resulting in a reshaping of the Firmicutes and a corresponding relative increase in Gram negative Proteobacteria. These changes were mirrored by the modification in relative abundance of pathways involved in acetate, butyrate (decreased) and propionate (increased) synthesis which correlated with overall reductions in short chain fatty acid levels in stool. These reversible changes that occur as a result of nisin ingestion demonstrate the potential of bacteriocins like nisin to shape mammalian microbiomes and impact on the functionality of the community.


Subject(s)
Bacteriocins , Gastrointestinal Microbiome , Lactococcus lactis , Nisin , Animals , Swine , Nisin/pharmacology , Nisin/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Bacteriocins/pharmacology , Bacteriocins/metabolism , Gram-Positive Bacteria/metabolism , Lactococcus lactis/metabolism , Mammals/metabolism
9.
Drug Deliv Transl Res ; 13(9): 2407-2423, 2023 09.
Article in English | MEDLINE | ID: mdl-36964439

ABSTRACT

Chronic wounds affect millions of people globally. This number is set to rise with the increasing incidence of antimicrobial-resistant bacterial infections, such as methicillin-resistant Staphylococcus aureus (MRSA), which impair the healing of chronic wounds. Lacticin 3147 is a two-peptide chain bacteriocin produced by Lactococcus lactis that is active against S. aureus including MRSA strains. Previously, poor physicochemical properties of the peptides were overcome by the encapsulation of lacticin 3147 into solid lipid nanoparticles. Here, a lacticin 3147 solid lipid nanoparticle gel is proposed as a topical treatment for S. aureus and MRSA wound infections. Initially, lacticin 3147's antimicrobial activity against S. aureus was determined before encapsulation into solid lipid nanoparticles. An optimised gel formulation with the desired physicochemical properties for topical application was developed, and the lacticin-loaded solid lipid nanoparticles and free lacticin 3147 aqueous solution were incorporated into separate gels. The release of lacticin 3147 from both the solid lipid nanoparticle and free lacticin gels was measured where the solid lipid nanoparticle gel exhibited increased activity for a longer period (11 days) compared to the free lacticin gel (9 days). Both gels displayed potent activity ex vivo against S. aureus-infected pig skin with significant bacterial eradication (> 75%) after 1 h. Thus, a long-acting potent lacticin 3147 solid lipid nanoparticle gel with the required physicochemical properties for topical delivery of lacticin 3147 to the skin for the potential treatment of S. aureus-infected chronic wounds was developed.


Subject(s)
Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Wound Infection , Animals , Swine , Staphylococcus aureus , Hydrogels , Peptides , Wound Infection/drug therapy , Anti-Bacterial Agents
10.
Microorganisms ; 11(2)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36838392

ABSTRACT

Nisin A, the prototypical lantibiotic, is an antimicrobial peptide currently utilised as a food preservative, with potential for therapeutic applications. Here, we describe nisin E, a novel nisin variant produced by two Streptococcus equinus strains, APC4007 and APC4008, isolated from sheep milk. Shotgun whole genome sequencing and analysis revealed biosynthetic gene clusters similar to nisin U, with a unique rearrangement of the core peptide encoding gene within the cluster. The 3100.8 Da peptide by MALDI-TOF mass spectrometry, is 75% identical to nisin A, with 10 differences, including 2 deletions: Ser29 and Ile30, and 8 substitutions: Ile4Lys, Gly18Thr, Asn20Pro, Met21Ile, His27Gly, Val32Phe, Ser33Gly, and Lys34Asn. Nisin E producing strains inhibited species of Lactobacillus, Bacillus, and Clostridiodes and were immune to nisin U. Sequence alignment identified putative promoter sequences across the nisin producer genera, allowing for the prediction of genes in Streptococcus to be potentially regulated by nisin. S. equinus pangenome BLAST analyses detected 6 nisin E operons across 44 publicly available genomes. An additional 20 genomes contained a subset of nisin E transport/immunity and regulatory genes (nseFEGRK), without adjacent peptide production genes. These genes suggest that nisin E response mechanisms, distinct from the canonical nisin immunity and resistance operons, are widespread across the S. equinus species. The discovery of this new nisin variant and its immunity determinants in S. equinus suggests a central role for nisin in the competitive nature of the species.

11.
Lett Appl Microbiol ; 76(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36695436

ABSTRACT

Lactic acid bacterium Lactococcus lactis BGBU1-4 produces 43 amino acids (aa) long bacteriocin, lactolisterin BU (LBU), a 5.161 kDa peptide with potent antibacterial activity against many Gram-positive pathogens. In addition, BGBU1-4 produces an additional unknown product of 3.642 kDa with antibacterial activity. Here, we determined that the significant amount of naturally produced LBU breaks down to create a 3.642 kDa truncated form of LBU bacteriocin consisting of 31 N-terminal aa (LBU1-31) that exhibits 12.5% the antibacterial activity of the full-length LBU. We showed that chemically synthesized LBU is stable and 50% less active than native LBU, and so we used the synthetic peptides of LBU and its variants to further study their activities and antibacterial potential. Deletion analysis of LBU revealed that the 24 N-terminal aa of LBU (LBU1-24) are responsible for antibacterial activity, while downstream aa (25-43) determine the species-specific effectiveness of LBU. Although LBU1-31 contains aa 1-24, the truncation at position 31 is predicted to change the structure within aa 15-31 and might impact on antibacterial activity. Intriguingly, whole genome sequencing and genome mining established that BGBU1-4 is abundant in genes that encode potential antibacterials, but produces LBU and its breakdown product LBU1-31 exclusively.


Subject(s)
Bacteriocins , Lactococcus lactis , Bacteriocins/genetics , Bacteriocins/pharmacology , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Anti-Bacterial Agents/metabolism
12.
Support Care Cancer ; 30(12): 9771-9779, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36287278

ABSTRACT

PURPOSE: Multiple myeloma (MM) is the second most common hematologic malignancy in the USA, with higher rates observed in older adults and African Americans (AA). Survivors experience fatigue, bone pain, reduced functioning, and obesity, highlighting the value of developing lifestyle interventions for this diverse group. This study explores lifestyle behaviors and supportive care needs to inform future programs tailored to the MM community. METHODS: MM survivors, ≥ 100 days post autologous stem cell transplant (ASCT) with a BMI ≥ 20 kg/m2, were recruited from two university hospitals. Diet, physical activity, and quality of life (QOL) were measured using validated measures. Qualitative interviews gathered information on survivorship needs and interests related to supportive interventions. Quantitative data was analyzed using descriptive statistics; qualitative data were analyzed using deductive strategies. RESULTS: Seveny-two MM survivors participated (65% white, 35% black). Participants were 62.5 ± 15.8 years of age. Fifty percent were classified as obese and 65% were insufficiently active. Participants reported diets high in added sugars and saturated fats. QOL measures indicated clinically significant challenges in physical and sexual function. Most (87%) were interested in a lifestyle program. Predominant themes regarding survivors' desires for a lifestyle program included social support, guided exercise, meal preparation support, and disease management information. CONCLUSION: This study demonstrates the need for and interest in lifestyle change support among a racially diverse sample of MM survivors. Interventions that are group-based, target knowledge gaps, social connections, accountability, and provide structured framework with professional instruction will best address the needs of this survivor population.


Subject(s)
Multiple Myeloma , Quality of Life , Humans , Aged , Feasibility Studies , Multiple Myeloma/therapy , Life Style , Health Behavior , Obesity/therapy
13.
Gut Microbes ; 14(1): 2100203, 2022.
Article in English | MEDLINE | ID: mdl-35877697

ABSTRACT

The gut microbiome is a vast reservoir of microbes, some of which produce antimicrobial peptides called bacteriocins that may inhibit specific bacteria associated with disease. Fusobacterium nucleatum is an emerging human bacterial pathogen associated with gastrointestinal diseases including colorectal cancer (CRC). In this study, fecal samples of healthy donors were screened for potential bacteriocin-producing probiotics with antimicrobial activity against F. nucleatum. A novel isolate, designated as Streptococcus salivarius DPC6993 demonstrated a narrow-spectrum of antimicrobial activity against F. nucleatum in vitro. In silico analysis of the S. salivarius DPC6993 genome revealed the presence of genes involved in the production of the bacteriocins salivaricin A5 and salivaricin B. After 6 h in a colon fermentation model, there was a significant drop in the number of F. nucleatum in samples that had been simultaneously inoculated with S. salivarius DPC6993 + F. nucleatum DSM15643 compared to those inoculated with F. nucleatum DSM15643 alone (mean ± SD: 9243.3 ± 3408.4 vs 29688.9 ± 4993.9 copies/µl). Furthermore, 16S rRNA amplicon analysis revealed a significant difference in the mean relative abundances of Fusobacterium between samples inoculated with both S. salivarius DPC6993 and F. nucleatum DSM15643 (0.05%) and F. nucleatum DSM15643 only (0.32%). Diversity analysis indicated minimal impact exerted by S. salivarius DPC6993 on the surrounding microbiota. Overall, this study highlights the ability of a natural gut bacterium to target a bacterial pathogen associated with CRC. The specific targeting of CRC-associated pathogens by biotherapeutics may ultimately reduce the risk of CRC development and positively impact CRC outcomes.


Subject(s)
Anti-Infective Agents , Bacteriocins , Colorectal Neoplasms , Gastrointestinal Microbiome , Streptococcus salivarius , Colon , Colorectal Neoplasms/microbiology , Fusobacterium nucleatum/genetics , Humans , RNA, Ribosomal, 16S
14.
Prostate Cancer ; 2022: 9242243, 2022.
Article in English | MEDLINE | ID: mdl-35693376

ABSTRACT

Black men treated with frontline therapies for metastatic prostate cancer (MPC) show better clinical outcomes than non-Black men receiving similar treatments. Variations in body composition may contribute to these findings. However, preliminary data are required to support this concept. We conducted a retrospective cohort study for all men with MPC evaluated at our center over a 4-year period, collecting demographic and clinical data (N = 74). Of these, 55 men had diagnostic computed tomography images to quantify adipose tissue and skeletal muscle, specifically sarcopenia and myosteatosis. Nineteen men had repeat imaging to explore changes over time. Frequencies, medians, interquartile ranges, and time to event analyses (hazard ratios (HR); confidence interval (CI)) are presented, stratified by race. Overall, 49% (n = 27) of men had sarcopenia, 49% (n = 27) had myosteatosis, and 29% (n = 16) had sarcopenia and myosteatosis simultaneously. No significant relationship between body mass index (Log-rank p=0.86; HR: 1.05, 95% CI: 0.45-2.49) or sarcopenia (Log-rankp=0.92; HR: 1.01, 95% CI: 0.46-2.19) and overall survival was observed. However, the presence of myosteatosis at diagnosis was associated with decreased overall survival (Log-rank p=0.09; HR: 2.34, 95% CI: 1.05-5.23), with more pronounced (statistically nonsignificant) negative associations for Black (HR: 4.39, 95% CI: 0.92-21.1, p=0.06) versus non-Black men (HR: 1.89, 95% CI: 0.79-4.54, p=0.16). Over the median 12.5 months between imaging, the median decline in skeletal muscle was 4% for all men. Black men displayed a greater propensity to gain more adipose tissue than non-Black men, specifically subcutaneous (p=0.01). Because of the potential for Type II errors in this pilot, future studies should seek to further evaluate the implications of body composition on outcomes. This will require larger, adequately powered investigations with diverse patient representation.

15.
Eur J Pharm Biopharm ; 176: 199-210, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35640784

ABSTRACT

The bacteriocin lacticin 3147 (lacticin) has shown activity against clinically relevant and antimicrobial-resistant bacteria such as Listeria monocytogenes and Clostridioides difficile. It is composed of two peptides, Ltnα and Ltnß, which work together to form pores in the membrane of Gram-positive bacteria. Lacticin possesses poor aqueous solubility and is degraded by intestinal proteases. In a previous study, peptides encapsulated into solid lipid nanoparticles (SLNs) displayed activity in aqueous media and were protected from enzyme degradation but showed a low encapsulation efficiency (EE%) for Ltnα. In this study, however, lacticin was encapsulated into SLNs both individually (single occupancy, SLNα + SLNß) and together (double occupancy SLNαß) via a nanoprecipitation technique. This achieved SLNs of uniform size with an EE% above 87% for both peptides at loadings of 9 or 18 mg/g of lipid under single occupancy or double occupancy respectively. SLNαß dispersions displayed more potent activity at 3.13 and 1.56 µg/ml lacticin than SLNα + SLNß dispersions. Thus, the SLNαß dispersion was chosen for further analysis. SLNαß dispersions showed no cytotoxicity to endothelial cells. The SLN release media (fasted state simulated intestinal fluid; FaSSIF) retained activity at 1 h and 3 h indicating that lacticin may be sufficiently protected from proteases present in the duodenum. Finally, a reconstituted freeze-dried SLNαß dispersion was stable and achieved 99.99% bacterial killing at 3.125 µg/ml lacticin. Thus, an SLN based lacticin delivery system was developed, potentially enabling oral administration of the bacteriocin to the colon to treat local infections such as C. difficile.


Subject(s)
Bacteriocins , Clostridioides difficile , Listeria monocytogenes , Nanoparticles , Bacteriocins/metabolism , Endothelial Cells/metabolism , Liposomes , Peptide Hydrolases , Peptides
16.
Microorganisms ; 10(4)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35456752

ABSTRACT

Exercise reduces inflammation, fatigue, and aids overall health. Additionally, physical fitness has been associated with desirable changes in the community composition of the athlete gut microbiome, with health-associated taxa being shown to be increased in active individuals. Here, using a combination of in silico and in vitro methods, we investigate the antimicrobial activity of the athlete gut microbiome. In vitro approaches resulted in the generation of 284 gut isolates with inhibitory activity against Clostridioides difficile and/or Fusobacterium nucleatum, and the most potent isolates were further characterized, and potential bacteriocins were predicted using both MALDI-TOF MS and whole-genome sequencing. Additionally, metagenomic reads from the faecal samples were used to recover 770 Metagenome Assembled Genomes (MAGs), of which 148 were assigned to be high-quality MAGs and screened for the presence of putative bacteriocin gene clusters using BAGEL4 software, with 339 gene clusters of interest being identified. Class I was the most abundant bacteriocin class predicted, accounting for 91.3% of predictions, Class III had a predicted abundance of 7.5%, and Class II was represented by just 1% of all predictions.

17.
Gut Microbes ; 14(1): 2004071, 2022.
Article in English | MEDLINE | ID: mdl-35104196

ABSTRACT

Pediocin PA-1 is a class IIa bacteriocin that is particularly effective against the foodborne pathogen Listeria monocytogenes. The loss of activity of PA-1 pediocin due to methionine oxidation is one of the challenges that limit the wider application of the bacteriocin. In this study, we heterologously expressed an oxidation resistant form of pediocin PA-1, i.e., pediocin M31L, and compared its activity to that of native pediocin PA-1 and to penocin A, a pediocin-like bacteriocin that displays a narrower antimicrobial spectrum. Minimal inhibitory concentration assays revealed that pediocin M31L was as effective as PA-1 and more effective than synthetic penocin A against Listeria with negligible activity against a range of obligate anaerobic commensal gut bacterial species. The anti-Listeria activity of these pediocins was also assessed in a simulated human distal colon model assay using the L. monocytogenes, spiked at 6.5 ± 0.13 Log CFU/mL, as a bioindicator. At 24 h, pediocin M31L and penocin A (2.6 µM) reduced Listeria counts to 3.5 ± 0.4 and 3.64 ± 0.62 Log CFU/mL, respectively, whereas Listeria counts were considerably higher, i.e. 7.75 ± 0.43 Log CFU/mL, in the non-bacteriocin-containing control. Ultimately, it was established that synthetic penocin A and the stable pediocin M31L derivative, heterologously produced, display effective anti-Listeria activity in a human gut environment.


Subject(s)
Anti-Bacterial Agents/pharmacology , Listeria monocytogenes/drug effects , Pediocins/pharmacology , Anti-Bacterial Agents/chemistry , Gastrointestinal Microbiome/drug effects , Humans , Listeria monocytogenes/growth & development , Microbial Sensitivity Tests , Molecular Structure , Oxidation-Reduction , Pediocins/chemistry
18.
J Appl Microbiol ; 132(2): 1397-1408, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34370377

ABSTRACT

AIMS: Nisin is a bacteriocin with a broad spectrum of activity against Gram-positive bacteria. The aims were to assess nisin activity against Clostridioides difficile in a complex microbial environment and determine the minimum inhibitory concentration at which C. difficile growth is suppressed whilst having minimal impact on the faecal microbiota. METHODS AND RESULTS: Faecal slurries were prepared from fresh faecal samples and spiked with C. difficile (106  CFU per ml). Nisin was added to each fermentation at a range of concentrations from 0 to 500 µM. Following 24 h, 16S rRNA gene sequencing was performed, and the presence of viable C. difficile was assessed. There was no viable C. difficile detected in the presence of 50-500 µM nisin. There was a decrease in the diversity of the microbiota in a nisin dose-dependent manner. Nisin predominantly depleted the relative abundance of the Gram-positive bacteria whilst the relative abundance of Gram-negative bacteria such as Escherichia Shigella and Bacteroides increased. CONCLUSIONS: Using an ex vivo model of the colon, this study demonstrates the ability of purified nisin to selectively deplete C. difficile in a faecal microbial environment and establishes the minimum concentration at which this occurs whilst having a minimal impact on the composition of the microbiota. SIGNIFICANCE AND IMPACT OF THE STUDY: This study opens up the potential to use nisin as a therapeutic for clostridial gut infections.


Subject(s)
Clostridioides difficile , Gastrointestinal Microbiome , Nisin , Clostridioides difficile/drug effects , Clostridium Infections , Colon , Feces , Fermentation , Gastrointestinal Microbiome/drug effects , Humans , Nisin/pharmacology , RNA, Ribosomal, 16S/genetics
19.
Front Microbiol ; 12: 789362, 2021.
Article in English | MEDLINE | ID: mdl-34899671

ABSTRACT

Bacillus velezensis ML122-2 is an antimicrobial-producing strain isolated from the leaf of Assam tea or Miang [Camellia sinensis var. assamica (J.W.Mast.) Kitam.]. The cell-free supernatant (CFS) of strain ML122-2 exhibits a broad-spectrum antimicrobial activity against various Gram-positive and Gram-negative bacteria as well as the mold Penicillium expansum. The genome of B. velezensis ML122-2 was sequenced and in silico analysis identified three potential bacteriocin-associated gene clusters, that is, those involved in the production of mersacidin, amylocyclicin, and LCI. Furthermore, six gene clusters exhibiting homology (75-100% DNA sequence identity) to those associated with the secondary metabolites bacilysin, bacillibactin, surfactin, macrolactin H, bacillaene, and plipastatin were identified. Individual antimicrobial activities produced by B. velezensis ML122-2 were purified and characterized by Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry analysis, revealing three antimicrobial peptides with molecular masses corresponding to surfactin, plipastatin, and amylocyclicin. Transcriptional analysis of specific genes associated with mersacidin (mrsA), amylocyclicin (acnA), plipastatin (ppsA), and surfactin (srfAA) production by B. velezensis ML122-2 showed that the first was not transcribed under the conditions tested, while the latter three were consistent with the presence of the associated peptides as determined by mass spectrometry analysis. These findings demonstrate that B. velezensis ML122-2 has the genetic capacity to produce a wide range of antimicrobial activities that may support a specific community structure and highlight the biotechnological properties of Assam tea.

20.
Breast Cancer Res Treat ; 190(1): 121-132, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34389926

ABSTRACT

PURPOSE: To examine the relationship between skeletal muscle (SM) and cancer-specific outcomes for women with estrogen receptor-negative (ER-) metastatic breast cancer (MBC). METHODS: For this retrospective cohort, females (≥ 18 years) with histologically confirmed ER- MBC and computerized tomography (CT) imaging were screened. Demographic, anthropometric, and clinical data were collected uniformly from the electronic medical record. CT images inclusive of the third lumbar region (L3) at diagnosis, 6 and 12 months, were used to classify sarcopenia (≤ 41 cm2/m2) and myosteatosis (< 41 or 33 Hounsfield Units, adjusted for body mass index (BMI)) and to evaluate changes in SM and total adipose tissue (TAT) over time. Kaplan-Meier curves, Cox Proportional Hazards (PH), and restricted mean survival time (RMST) estimates were generated to examine the relationship between sarcopenia and myosteatosis and time to tumor progression (TTP), treatment toxicity and 2-year survival, adjusting for covariates. RESULTS: Participants were 58.0 (15.0) years of age, ethnically diverse (55% non-Hispanic white, 31% Black, 11% Hispanic), post-menopausal (73%, n = 111), and classified as overweight (BMI 29.4 (7.6)). At diagnosis, 40% (n = 61) were sarcopenic, 49% had myosteatosis, and 28% (n = 42) had both. While Cox PH modeling and RMST analysis reveal no significant relationship between sarcopenia at diagnosis and 2-year survival (RMST difference - 1.6 (1.4) months, HR 1.35 (0.88-2.08)), these analyses support a significant, adverse association between myosteatosis at diagnosis and 2-year survival (RMST difference - 2.4 (1.5) months, HR 1.72 (1.09-2.72)). Incident sarcopenia was 11% (n = 5/45) and 2.5% (n = 1/40), respectively, while incident myosteatosis was 19% (n = 8/42) and 15% (n = 5/34) at 6 and 12 months, respectively. TTP and treatment toxicities did not appear to be related to diagnostic SM or body composition changes over time. CONCLUSION: Targeted interventions initiated within the first year of diagnosis to preserve or improve SM quality seem warranted for women with ER-MBC.


Subject(s)
Breast Neoplasms , Sarcopenia , Body Composition , Breast Neoplasms/complications , Breast Neoplasms/pathology , Female , Humans , Muscle, Skeletal/pathology , Receptors, Estrogen/metabolism , Retrospective Studies , Sarcopenia/diagnosis , Sarcopenia/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...