Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Res Sq ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38766088

ABSTRACT

Activated T cells undergo a metabolic shift to aerobic glycolysis to support the energetic demands of proliferation, differentiation, and cytolytic function. Transmembrane glucose flux is facilitated by glucose transporters (GLUT) that play a vital role in T cell metabolic reprogramming and anti-tumour function. GLUT isoforms are regulated at the level of expression and subcellular distribution. GLUTs also display preferential selectivity for carbohydrate macronutrients including glucose, galactose, and fructose. GLUT5, which selectively transports fructose over glucose, has never been explored as a genetic engineering strategy to enhance CAR-T cells in fructose-rich tumour environments. Fructose levels are significantly elevated in the bone marrow and the plasma of acute myeloid leukaemia (AML) patients. Here, we demonstrate that the expression of wild-type GLUT5 restores T cell metabolic fitness in glucose-free, high fructose conditions. We find that fructose supports maximal glycolytic capacity and ATP replenishment rates in GLUT5-expressing T cells. Using steady state tracer technology, we show that 13C6 fructose supports glycolytic reprogramming and TCA anaplerosis in CAR-T cells undergoing log phase expansion. In cytotoxicity assays, GLUT5 rescues T cell cytolytic function in glucose-free medium. The fructose/GLUT5 metabolic axis also supports maximal migratory velocity, which provides mechanistic insight into why GLUT5-expressing CAR-Ts have superior effector function as they undergo "hit-and-run" serial killing. These findings translate to superior anti-tumour function in a xenograft model of AML. In fact, we found that GLUT5 enhances CAR-T cell anti-tumour function in vivo without any need for fructose intervention. Accordingly, we hypothesize that GLUT5 is sufficient to enhance CAR-T resilience by increasing the cells' competitiveness for glucose at physiologic metabolite levels. Our findings have immediate translational relevance by providing the first evidence that GLUT5 confers a competitive edge in a fructose-enriched milieu, and is a novel approach to overcome glucose depletion in hostile tumour microenvironments (TMEs).

2.
Proc Natl Acad Sci U S A ; 121(10): e2317735121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38408246

ABSTRACT

Chimeric antigen receptor (CAR) T cell dysfunction is a major barrier to achieving lasting remission in hematologic cancers, especially in chronic lymphocytic leukemia (CLL). We have shown previously that Δ133p53α, an endogenous isoform of the human TP53 gene, decreases in expression with age in human T cells, and that reconstitution of Δ133p53α in poorly functional T cells can rescue proliferation [A. M. Mondal et al., J. Clin. Invest. 123, 5247-5257 (2013)]. Although Δ133p53α lacks a transactivation domain, it can form heterooligomers with full-length p53 and modulate the p53-mediated stress response [I. Horikawa et al., Cell Death Differ. 24, 1017-1028 (2017)]. Here, we show that constitutive expression of Δ133p53α potentiates the anti-tumor activity of CD19-directed CAR T cells and limits dysfunction under conditions of high tumor burden and metabolic stress. We demonstrate that Δ133p53α-expressing CAR T cells exhibit a robust metabolic phenotype, maintaining the ability to execute effector functions and continue proliferating under nutrient-limiting conditions, in part due to upregulation of critical biosynthetic processes and improved mitochondrial function. Importantly, we show that our strategy to constitutively express Δ133p53α improves the anti-tumor efficacy of CAR T cells generated from CLL patients that previously failed CAR T cell therapy. More broadly, our results point to the potential role of the p53-mediated stress response in limiting the prolonged antitumor functions required for complete tumor clearance in patients with high disease burden, suggesting that modulation of the p53 signaling network with Δ133p53α may represent a translationally viable strategy for improving CAR T cell therapy.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive/methods , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Antigens, CD19 , Cell- and Tissue-Based Therapy , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism
3.
Blood ; 143(2): 139-151, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-37616575

ABSTRACT

ABSTRACT: Patients with multiple myeloma (MM) treated with B-cell maturation antigen (BCMA)-specific chimeric antigen receptor (CAR) T cells usually relapse with BCMA+ disease, indicative of CAR T-cell suppression. CD200 is an immune checkpoint that is overexpressed on aberrant plasma cells (aPCs) in MM and is an independent negative prognostic factor for survival. However, CD200 is not present on MM cell lines, a potential limitation of current preclinical models. We engineered MM cell lines to express CD200 at levels equivalent to those found on aPCs in MM and show that these are sufficient to suppress clinical-stage CAR T-cells targeting BCMA or the Tn glycoform of mucin 1 (TnMUC1), costimulated by 4-1BB and CD2, respectively. To prevent CD200-mediated suppression of CAR T cells, we compared CRISPR-Cas9-mediated knockout of the CD200 receptor (CD200RKO), to coexpression of versions of the CD200 receptor that were nonsignaling, that is, dominant negative (CD200RDN), or that leveraged the CD200 signal to provide CD28 costimulation (CD200R-CD28 switch). We found that the CD200R-CD28 switch potently enhanced the polyfunctionality of CAR T cells, and improved cytotoxicity, proliferative capacity, CAR T-cell metabolism, and performance in a chronic antigen exposure assay. CD200RDN provided modest benefits, but surprisingly, the CD200RKO was detrimental to CAR T-cell activity, adversely affecting CAR T-cell metabolism. These patterns held up in murine xenograft models of plasmacytoma, and disseminated bone marrow predominant disease. Our findings underscore the importance of CD200-mediated immune suppression in CAR T-cell therapy of MM, and highlight a promising approach to enhance such therapies by leveraging CD200 expression on aPCs to provide costimulation via a CD200R-CD28 switch.


Subject(s)
Immunotherapy, Adoptive , Multiple Myeloma , Humans , Mice , Animals , Multiple Myeloma/metabolism , CD28 Antigens/metabolism , T-Lymphocytes , B-Cell Maturation Antigen/metabolism , Neoplasm Recurrence, Local/metabolism
4.
Sci Adv ; 9(49): eadm6816, 2023 12 08.
Article in English | MEDLINE | ID: mdl-38055812

ABSTRACT

Inhibiting a key metabolic enzyme, ACLY, in cancer cells impacts T cell function in immunotherapy-resistant tumors and may offer a target for therapeutic treatment.


Subject(s)
Neoplasms , Humans , Neoplasms/pathology
5.
Cancer Immunol Res ; 11(11): 1524-1537, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37649085

ABSTRACT

Natural killer (NK) cells are frequently expanded for the clinic using irradiated, engineered K562 feeder cells expressing a core transgene set of membrane-bound (mb) IL15 and/or mbIL21 together with 41BBL. Prior comparisons of mbIL15 to mbIL21 for NK expansion lack comparisons of key attributes of the resulting NK cells, including their high-dimensional phenotype, polyfunctionality, the breadth and potency of cytotoxicity, cellular metabolism, and activity in xenograft tumor models. Moreover, despite multiple rounds of K562 stimulation, studies of sequential use of mbIL15- and mbIL21-based feeder cells are absent. We addressed these gaps and found that using mbIL15- versus mbIL21-based feeder cells drove distinct phenotypic and functional profiles. Feeder cells expressing mbIL15 alone drove superior functionality by nearly all measures, whereas those expressing mbIL21 alone drove superior yield. In combination, most attributes resembled those imparted by mbIL21, whereas in sequence, NK yield approximated that imparted by the first cytokine, and the phenotype, transcriptome, and function resembled that driven by the second cytokine, highlighting the plasticity of NK cell differentiation. The sequence mbIL21 followed by mbIL15 was advantageous in achieving significant yields of highly functional NK cells that demonstrated equivalent in vivo activity to those expanded by mbIL15 alone in two of three xenograft models. Our findings define the impact of mbIL15 versus mbIL21 during NK expansion and reveal a previously underappreciated tradeoff between NK yield and function for which sequential use of mbIL21-based followed by mbIL15-based feeder cells may be the optimal approach in many settings.


Subject(s)
Interleukin-15 , Killer Cells, Natural , Humans , Interleukin-15/metabolism , K562 Cells , Killer Cells, Natural/metabolism , Cell Proliferation , Cytokines/metabolism
6.
Sci Transl Med ; 15(705): eade3341, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37467318

ABSTRACT

Allogeneic natural killer (NK) cell adoptive transfer has shown the potential to induce remissions in relapsed or refractory leukemias and lymphomas, but strategies to enhance NK cell survival and function are needed to improve clinical efficacy. Here, we demonstrated that NK cells cultured ex vivo with interleukin-15 (IL-15) and nicotinamide (NAM) exhibited stable induction of l-selectin (CD62L), a lymphocyte adhesion molecule important for lymph node homing. High frequencies of CD62L were associated with elevated transcription factor forkhead box O1 (FOXO1), and NAM promoted the stability of FOXO1 by preventing proteasomal degradation. NK cells cultured with NAM exhibited metabolic changes associated with elevated glucose flux and protection against oxidative stress. NK cells incubated with NAM also displayed enhanced cytotoxicity and inflammatory cytokine production and preferentially persisted in xenogeneic adoptive transfer experiments. We also conducted a first-in-human phase 1 clinical trial testing adoptive transfer of NK cells expanded ex vivo with IL-15 and NAM (GDA-201) combined with monoclonal antibodies in patients with relapsed or refractory non-Hodgkin lymphoma (NHL) and multiple myeloma (MM) (NCT03019666). Cellular therapy with GDA-201 and rituximab was well tolerated and yielded an overall response rate of 74% in 19 patients with advanced NHL. Thirteen patients had a complete response, and 1 patient had a partial response. GDA-201 cells were detected for up to 14 days in blood, bone marrow, and tumor tissues and maintained a favorable metabolic profile. The safety and efficacy of GDA-201 in this study support further development as a cancer therapy.


Subject(s)
Interleukin-15 , Lymphoma, Non-Hodgkin , Humans , Interleukin-15/metabolism , Niacinamide/metabolism , Lymphoma, Non-Hodgkin/therapy , Lymphoma, Non-Hodgkin/metabolism , Rituximab/metabolism , Killer Cells, Natural
7.
Mol Cancer Ther ; 22(4): 435-446, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36779991

ABSTRACT

Glioblastoma (GBM), also known as grade IV astrocytoma, is the most common and deadly type of central nervous system malignancy in adults. Despite significant breakthroughs in current GBM treatments such as surgery, radiotherapy, and chemotherapy, the prognosis for late-stage glioblastoma remains bleak due to tumor recurrence following surgical resection. The poor prognosis highlights the evident and pressing need for more efficient and targeted treatment. Vaccination has successfully treated patients with advanced colorectal and lung cancer. Therefore, the potential value of using tumor vaccines in treating glioblastoma is increasingly discussed as a monotherapy or in combination with other cellular immunotherapies. Cancer vaccination includes both passive administration of monoclonal antibodies and active vaccination procedures to activate, boost, or bias antitumor immunity against cancer cells. This article focuses on active immunotherapy with peptide, genetic (DNA, mRNA), and cell-based vaccines in treating GBM and reviews the various treatment approaches currently being tested. Although the ease of synthesis, relative safety, and ability to elicit tumor-specific immune responses have made these vaccines an invaluable tool for cancer treatment, more extensive cohort studies and better guidelines are needed to improve the efficacy of these vaccines in anti-GBM therapy.


Subject(s)
Brain Neoplasms , Cancer Vaccines , Glioblastoma , Adult , Humans , Glioblastoma/drug therapy , Brain Neoplasms/pathology , Immunotherapy/methods , Prognosis , Vaccination
8.
Cancer Lett ; 550: 215948, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36209973

ABSTRACT

Longevity, functionality, and metabolic fitness are key determinants of chimeric antigen receptor (CAR) T cell efficacy. Activated T cells follow an ordered differentiation program which is facilitated by metabolic adaptations. In response to antigen, T cells undergo a highly-regulated shift to glycolysis. Committing to, and engaging in, glycolysis supports T cell expansion and effector function. Inside tumors, heightened tumor cell metabolism and dysregulated perfusion create a competition for nutrients. As local metabolism supports the differentiation of T cells into functionally-competent progeny, nutrient depletion coupled with persisting antigen can trigger T cell exhaustion. Emerging insights into the barriers impeding CAR T cell function in hostile tumor microenvironments (TME) reveal that metabolic intermediates shape the immune response by influencing epigenetic programs and the control of gene expression. In this review, we discuss recent progress connecting cellular metabolism with epigenetic states in CAR T cells. Given that CAR T cell metabolism can be dynamically regulated, we introduce the concepts of "metabolic-based epigenetic altering" and "epigenetic-based metabolism altering" to restore functional competence in CARTs traversing solid TMEs.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Antigens, Viral, Tumor/metabolism , Epigenesis, Genetic , Humans , Immunotherapy, Adoptive , Neoplasms/pathology , T-Lymphocytes , Tumor Microenvironment
9.
Nat Cancer ; 3(7): 808-820, 2022 07.
Article in English | MEDLINE | ID: mdl-35637402

ABSTRACT

Evasion of antitumor immunity and resistance to therapies in solid tumors are aided by an immunosuppressive tumor microenvironment (TME). We found that TME factors, such as regulatory T cells and adenosine, downregulated type I interferon receptor IFNAR1 on CD8+ cytotoxic T lymphocytes (CTLs). These events relied upon poly-ADP ribose polymerase-11 (PARP11), which was induced in intratumoral CTLs and acted as a key regulator of the immunosuppressive TME. Ablation of PARP11 prevented loss of IFNAR1, increased CTL tumoricidal activity and inhibited tumor growth in an IFNAR1-dependent manner. Accordingly, genetic or pharmacologic inactivation of PARP11 augmented the therapeutic benefits of chimeric antigen receptor T cells. Chimeric antigen receptor CTLs engineered to inactivate PARP11 demonstrated a superior efficacy against solid tumors. These findings highlight the role of PARP11 in the immunosuppressive TME and provide a proof of principle for targeting this pathway to optimize immune therapies.


Subject(s)
Neoplasms , Poly(ADP-ribose) Polymerases/metabolism , Receptors, Chimeric Antigen , Humans , Immunosuppression Therapy , Immunotherapy, Adoptive , Neoplasms/drug therapy , Receptors, Chimeric Antigen/genetics , Tumor Microenvironment
10.
Nat Biomed Eng ; 6(2): 118-128, 2022 02.
Article in English | MEDLINE | ID: mdl-35190680

ABSTRACT

Chimaeric antigen receptor (CAR) T cells can generate durable clinical responses in B-cell haematologic malignancies. The manufacturing of these T cells typically involves their activation, followed by viral transduction and expansion ex vivo for at least 6 days. However, the activation and expansion of CAR T cells leads to their progressive differentiation and the associated loss of anti-leukaemic activity. Here we show that functional CAR T cells can be generated within 24 hours from T cells derived from peripheral blood without the need for T-cell activation or ex vivo expansion, and that the efficiency of viral transduction in this process is substantially influenced by the formulation of the medium and the surface area-to-volume ratio of the culture vessel. In mouse xenograft models of human leukaemias, the rapidly generated non-activated CAR T cells exhibited higher anti-leukaemic in vivo activity per cell than the corresponding activated CAR T cells produced using the standard protocol. The rapid manufacturing of CAR T cells may reduce production costs and broaden their applicability.


Subject(s)
Leukemia , Receptors, Chimeric Antigen , Animals , Humans , Immunotherapy, Adoptive/methods , Mice , T-Lymphocytes
11.
Mol Ther ; 30(3): 1201-1214, 2022 03 02.
Article in English | MEDLINE | ID: mdl-34813961

ABSTRACT

Prior to adoptive transfer, CAR T cells are activated, lentivirally infected with CAR transgenes, and expanded over 9 to 11 days. An unintended consequence of this process is the progressive differentiation of CAR T cells over time in culture. Differentiated T cells engraft poorly, which limits their ability to persist and provide sustained tumor control in hematologic as well as solid tumors. Solid tumors include other barriers to CAR T cell therapies, including immune and metabolic checkpoints that suppress effector function and durability. Sialic acids are ubiquitous surface molecules with known immune checkpoint functions. The enzyme C. perfringens neuraminidase (CpNA) removes sialic acid residues from target cells, with good activity at physiologic conditions. In combination with galactose oxidase (GO), NA has been found to stimulate T cell mitogenesis and cytotoxicity in vitro. Here we determine whether CpNA alone and in combination with GO promotes CAR T cell antitumor efficacy. We show that CpNA restrains CAR T cell differentiation during ex vivo culture, giving rise to progeny with enhanced therapeutic potential. CAR T cells expressing CpNA have superior effector function and cytotoxicity in vitro. In a Nalm-6 xenograft model of leukemia, CAR T cells expressing CpNA show enhanced antitumor efficacy. Arming CAR T cells with CpNA also enhanced tumor control in xenograft models of glioblastoma as well as a syngeneic model of melanoma. Given our findings, we hypothesize that charge repulsion via surface glycans is a regulatory parameter influencing differentiation. As T cells engage target cells within tumors and undergo constitutive activation through their CARs, critical thresholds of negative charge may impede cell-cell interactions underlying synapse formation and cytolysis. Removing the dense pool of negative cell-surface charge with CpNA is an effective approach to limit CAR T cell differentiation and enhance overall persistence and efficacy.


Subject(s)
Clostridium perfringens , Receptors, Chimeric Antigen , Antigens, CD19 , Cell Line, Tumor , Clostridium perfringens/enzymology , Humans , Immunotherapy, Adoptive , Neuraminidase/genetics , Xenograft Model Antitumor Assays
12.
Front Immunol ; 12: 757836, 2021.
Article in English | MEDLINE | ID: mdl-34712243

ABSTRACT

The therapeutic efficacy of allogeneic hematopoietic stem cell transplantation (allo-HSCT) is limited by the development of graft-versus-host disease (GVHD). In GVHD, rigorous pre-conditioning regimen resets the immune landscape and inflammatory milieu causing immune dysregulation, characterized by an expansion of alloreactive cells and a reduction in immune regulatory cells. In acute GVHD (aGVHD), the release of damage- and pathogen- associated molecular patterns from damaged tissue caused by the conditioning regimen sets the stage for T cell priming, activation and expansion further exacerbating tissue injury and organ damage, particularly in the gastrointestinal tract. Studies have shown that donor T cells utilize multiple energetic and biosynthetic pathways to mediate GVHD that can be distinct from the pathways used by regulatory T cells for their suppressive function. In chronic GVHD (cGVHD), donor T cells may differentiate into IL-21 producing T follicular helper cells or tissue resident T helper cells that cooperate with germinal center B cells or memory B cells, respectively, to produce allo- and auto-reactive antibodies with subsequent tissue fibrosis. Alternatively, donor T cells can become IFN- γ/IL-17 cytokine expressing T cells that mediate sclerodermatous skin injury. Patients refractory to the first line standard regimens for GVHD treatment have a poor prognosis indicating an urgent need for new therapies to restore the balance between effector and regulatory immune cells while preserving the beneficial graft-versus-tumor effect. Emerging data points toward a role for metabolism in regulating these allo- and auto-immune responses. Here, we will discuss the preclinical and clinical data available on the distinct metabolic demands of acute and chronic GVHD and recent efforts in identifying therapeutic targets using metabolomics. Another dimension of this review will examine the changing microbiome after allo-HSCT and the role of microbial metabolites such as short chain fatty acids and long chain fatty acids on regulating immune responses. Lastly, we will examine the metabolic implications of coinhibitory pathway blockade and cellular therapies in allo-HSCT. In conclusion, greater understanding of metabolic pathways involved in immune cell dysregulation during allo-HSCT may pave the way to provide novel therapies to prevent and treat GVHD.


Subject(s)
Graft vs Host Disease/therapy , Metabolomics/trends , Acute Disease , Amino Acids/metabolism , Chronic Disease , Dysbiosis/complications , Dysbiosis/immunology , Energy Metabolism , Fatty Acids/physiology , Gastrointestinal Microbiome/immunology , Glutamine/metabolism , Glycolysis , Graft vs Host Disease/metabolism , Graft vs Tumor Effect , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Immune Checkpoint Proteins/physiology , Immunomodulation , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Metabolomics/methods , Reactive Oxygen Species , T-Lymphocyte Subsets/immunology , Transplantation Conditioning/adverse effects , Transplantation, Homologous/adverse effects , Vitamins/metabolism
13.
Cells ; 10(9)2021 09 06.
Article in English | MEDLINE | ID: mdl-34571983

ABSTRACT

The metabolic milieu of solid tumors provides a barrier to chimeric antigen receptor (CAR) T-cell therapies. Excessive lactate or hypoxia suppresses T-cell growth, through mechanisms including NADH buildup and the depletion of oxidized metabolites. NADH is converted into NAD+ by the enzyme Lactobacillus brevis NADH Oxidase (LbNOX), which mimics the oxidative function of the electron transport chain without generating ATP. Here we determine if LbNOX promotes human CAR T-cell metabolic activity and antitumor efficacy. CAR T-cells expressing LbNOX have enhanced oxygen as well as lactate consumption and increased pyruvate production. LbNOX renders CAR T-cells resilient to lactate dehydrogenase inhibition. But in vivo in a model of mesothelioma, CAR T-cell's expressing LbNOX showed no increased antitumor efficacy over control CAR T-cells. We hypothesize that T cells in hostile environments face dual metabolic stressors of excessive NADH and insufficient ATP production. Accordingly, futile T-cell NADH oxidation by LbNOX is insufficient to promote tumor clearance.


Subject(s)
Adenosine Triphosphate/metabolism , Multienzyme Complexes/metabolism , NADH, NADPH Oxidoreductases/metabolism , Receptors, Antigen, T-Cell/metabolism , Adult , Animals , Female , Humans , Levilactobacillus brevis/metabolism , Male , Mice , Mice, Inbred NOD , Mice, SCID , NAD/metabolism , Oxidation-Reduction , T-Lymphocytes/metabolism
14.
Antibodies (Basel) ; 10(3)2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34203136

ABSTRACT

T cell therapies, including CAR T cells, have proven more effective in hematologic malignancies than solid tumors, where the local metabolic environment is distinctly immunosuppressive. In particular, the acidic and hypoxic features of the tumor microenvironment (TME) present a unique challenge for T cells. Local metabolism is an important consideration for activated T cells as they undergo bursts of migration, proliferation and differentiation in hostile soil. Tumor cells and activated T cells both produce lactic acid at high rates. The role of lactic acid in T cell biology is complex, as lactate is an often-neglected carbon source that can fuel TCA anaplerosis. Circulating lactate is also an important means to regulate redox balance. In hypoxic tumors, lactate is immune-suppressive. Here, we discuss how intrinsic- (T cells) as well as extrinsic (tumor cells and micro-environmental)-derived metabolic factors, including lactate, suppress the ability of antigen-specific T cells to eradicate tumors. Finally, we introduce recent discoveries that target the TME in order to potentiate T cell-based therapies against cancer.

15.
Front Oncol ; 11: 669071, 2021.
Article in English | MEDLINE | ID: mdl-34026647

ABSTRACT

Autologous chimeric antigen receptor (CAR) T cells targeted to epidermal growth factor receptor variant III (CAR T-EGFRvIII) have been developed and administered experimentally to treat patients with IDH1 wildtype recurrent glioblastoma (rGBM) (NCT02209376). We report the case of a 59-year-old patient who received a single peripheral infusion of CAR T-EGFRvIII cells and survived 36 months after disease recurrence, exceeding expected survival for recurrent glioblastoma. Post-infusion histopathologic analysis of tissue obtained during a second stage surgical resection revealed immunosuppressive adaptive changes in the tumor tissue as well as reduced EGFRvIII expression. Serial brain imaging demonstrated a significant reduction in relative cerebral blood volume (rCBV), a measure strongly associated with tumor proliferative activity, at early time points following CAR T treatment. Notably, CAR T-EGFRvIII cells persisted in her peripheral circulation during 29 months of follow-up, the longest period of CAR T persistence reported in GBM trials to date. These findings in a long-term survivor show that peripherally administered CAR T-EGFRvIII cells can persist for years in the circulation and suggest that this cell therapy approach could be optimized to achieve broader efficacy in recurrent GBM patients.

16.
Mol Cancer Ther ; 20(7): 1223-1233, 2021 07.
Article in English | MEDLINE | ID: mdl-33903140

ABSTRACT

Combining synthetic biology with adoptive T-cell transfer has led to promising advances in the treatment of relapsed/refractory B-cell acute lymphoblastic leukemia (R/R B-ALL), diffuse large B-cell lymphoma (DLBCL), and mantle cell lymphoma (MCL). Chimeric antigen receptors (CARs) are synthetic receptors that redirect T-cell specificity against cancer. CARs include "built-in" signaling domains that reprogram T-cell metabolism, enhance effector function, and support long-term persistence. Despite their success in blood-based malignancies, relapse can occur in CD19-redirected CAR T-cell therapies for several reasons, including poor engraftment, impaired in vivo proliferation, and T-cell senescence. Herein, we explain how subtle alterations in CAR design may overcome barriers to effective adoptive immunotherapy. We also discuss how the physiochemical properties of the single-chain variable fragment (scFv) affect differentiation and persistence. Moreover, we describe innovative advances in CAR engineering and provide insight into the development of humanized scFvs whose proposed benefits include increased persistence and improved clinical outcomes. Tumor cells can evade CAR T-cell-mediated detection and elimination due to the emergence or presence of CD19-negative leukemic cell subpopulations. We also discuss the opportunities and challenges in targeting other B-ALL-associated antigens. Identifying alternate targets is fundamentally necessary to restore the success of CAR T-cell therapies in CD19-negative patients with B-ALL.


Subject(s)
Immunotherapy, Adoptive , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Animals , Antigens, CD19/immunology , Antigens, Neoplasm/immunology , Disease Management , Genetic Engineering , Humans , Immunity , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/etiology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/immunology , Research Design , T-Cell Antigen Receptor Specificity/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Treatment Outcome , Tumor Escape/immunology
17.
Nat Commun ; 12(1): 877, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33563975

ABSTRACT

The immunosuppressive tumor microenvironment (TME) represents a major barrier for effective immunotherapy. Tumor-associated macrophages (TAMs) are highly heterogeneous and plastic cell components of the TME which can either promote tumor progression (M2-like) or boost antitumor immunity (M1-like). Here, we demonstrate that a subset of TAMs that express folate receptor ß (FRß) possess an immunosuppressive M2-like profile. In syngeneic tumor mouse models, chimeric antigen receptor (CAR)-T cell-mediated selective elimination of FRß+ TAMs in the TME results in an enrichment of pro-inflammatory monocytes, an influx of endogenous tumor-specific CD8+ T cells, delayed tumor progression, and prolonged survival. Preconditioning of the TME with FRß-specific CAR-T cells also improves the effectiveness of tumor-directed anti-mesothelin CAR-T cells, while simultaneous co-administration of both CAR products does not. These results highlight the pro-tumor role of FRß+ TAMs in the TME and the therapeutic implications of TAM-depleting agents as preparative adjuncts to conventional immunotherapies that directly target tumor antigens.


Subject(s)
Immunotherapy, Adoptive/methods , Neoplasms/therapy , Receptors, Chimeric Antigen/immunology , Tumor-Associated Macrophages/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Folate Receptor 2/immunology , Folate Receptor 2/metabolism , Humans , Immunosuppression Therapy , Mesothelin , Mice , Mice, Inbred C57BL , Monocytes/immunology , Neoplasms/immunology , Tumor Cells, Cultured , Tumor Microenvironment/immunology , Tumor-Associated Macrophages/metabolism
20.
Blood Adv ; 4(19): 4653-4664, 2020 10 13.
Article in English | MEDLINE | ID: mdl-33002133

ABSTRACT

Engineered T-cell therapies have demonstrated impressive clinical responses in patients with hematologic malignancies. Despite this efficacy, many patients have a transient persistence of T cells, which can be correlated with transient clinical response. Translational data on T cells from pediatric cancer patients shows a progressive decline in chimeric antigen receptor (CAR) suitability with cumulative chemotherapy regardless of regimen. We investigated the effects of chemotherapy on surviving T cells in vitro, describing residual deficits unique to each agent including mitochondrial damage and metabolic alterations. In the case of cyclophosphamide but not doxorubicin or cytarabine, these effects could be reversed with N-acetylcysteine. Specifically, we observed that surviving T cells could be stimulated, expanded, and transduced with CARs with preserved short-term cytolytic function but at far lower numbers and with residual metabolic deficits. These data have implications for understanding the effects of chemotherapy on mature T cells later collected for adoptive cell therapy, as chemotherapy-exposed T cells may have lingering dysfunction that affects ex vivo adoptive cell therapy manufacturing techniques and, ultimately, clinical efficacy.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Cell Proliferation , Child , Humans , Immunotherapy, Adoptive , T-Lymphocytes
SELECTION OF CITATIONS
SEARCH DETAIL
...