Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 159(9)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37668251

ABSTRACT

We analyze the shear response of grafted polymer chains in shear flow via coarse-grained molecular dynamics simulations with an explicit solvent. We find that the solvent flow penetrates into almost the whole brush for "mushroom"-type brushes but only a few bond distances for dense brushes. In all cases, the external stress on the wall equals the entropic stress associated with the distorted polymer conformations. We find that the external stress increases linearly with shear rate at low rates and sublinearly at high rates. The transition from linear to sublinear scaling occurs where chains react to flow by reorienting. Sublinear scaling with shear rate disappears if the shear rate is nondimensionalized with the effective relaxation time of chain subsegments located in the outer part of the brush that experiences flow.

2.
ACS Polym Au ; 3(4): 307-317, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37576713

ABSTRACT

Ring polymers have fascinated scientists for decades, but experimental progress has been challenging due to the presence of linear chain contaminants that fundamentally alter dynamics. In this work, we report the unexpected slow stress relaxation behavior of concentrated ring polymers that arises due to ring-ring interactions and ring packing structure. Topologically pure, high molecular weight ring polymers are prepared without linear chain contaminants using cyclic poly(phthalaldehyde) (cPPA), a metastable polymer chemistry that rapidly depolymerizes from free ends at ambient temperatures. Linear viscoelastic measurements of highly concentrated cPPA show slow, non-power-law stress relaxation dynamics despite the lack of linear chain contaminants. Experiments are complemented by molecular dynamics (MD) simulations of unprecedentedly high molecular weight rings, which clearly show non-power-law stress relaxation in good agreement with experiments. MD simulations reveal substantial ring-ring interpenetrations upon increasing ring molecular weight or local backbone stiffness, despite the global collapsed nature of single ring conformation. A recently proposed microscopic theory for unconcatenated rings provides a qualitative physical mechanism associated with the emergence of strong inter-ring caging which slows down center-of-mass diffusion and long wavelength intramolecular relaxation modes originating from ring-ring interpenetrations, governed by the onset variable N/ND, where the crossover degree of polymerization ND is qualitatively predicted by theory. Our work overcomes challenges in achieving ring polymer purity and by characterizing dynamics for high molecular weight ring polymers. Overall, these results provide a new understanding of ring polymer physics.

3.
ACS Polym Au ; 3(2): 209-216, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37065717

ABSTRACT

The topological constraints of nonconcatenated ring polymers force them to form compact loopy globular conformations with much lower entropy than unconstrained ideal rings. The closed-loop structure of ring polymers also enables them to be threaded by linear polymers in ring/linear blends, resulting in less compact ring conformations with higher entropy. This conformational entropy increase promotes mixing rings with linear polymers. Here, using molecular dynamics simulations for bead-spring chains, ring/linear blends are shown to be significantly more miscible than linear/linear blends and that there is an entropic mixing, negative χ, for ring/linear blends compared to linear/linear and ring/ring blends. In analogy with small angle neutron scattering, the static structure function S(q) is measured, and the resulting data are fit to the random phase approximation model to determine χ. In the limit that the two components are the same, χ = 0 for the linear/linear and ring/ring blends as expected, while χ < 0 for the ring/linear blends. With increasing chain stiffness, χ for the ring/linear blends becomes more negative, varying reciprocally with the number of monomers between entanglements. Ring/linear blends are also shown to be more miscible than either ring/ring or linear/linear blends and stay in single phase for a wider range of increasing repulsion between the two components.

4.
Phys Rev Lett ; 128(23): 237801, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35749195

ABSTRACT

The stretchability of polymeric materials is critical to many applications such as flexible electronics and soft robotics, yet the stretchability of conventional cross-linked linear polymers is limited by the entanglements between polymer chains. We show using molecular dynamics simulations that cross-linked ring polymers are significantly more stretchable than cross-linked linear polymers. Compared to linear polymers, the entanglements between ring polymers do not act as effective cross-links. As a result, the stretchability of cross-linked ring polymers is determined by the maximum extension of polymer strands between cross-links, rather than between trapped entanglements as in cross-linked linear polymers. The more compact conformation of ring polymers before deformation also contributes to the increase in stretchability.


Subject(s)
Elastomers , Polymers , Molecular Conformation , Molecular Dynamics Simulation
5.
Macromolecules ; 54(15): 7051-7059, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-35935463

ABSTRACT

The diffusion of monomerically thin nanorods in polymer melts is studied by molecular dynamics simulations. We focus on the systems where chains are long enough to screen the hydrodynamic interactions such that the diffusion coefficient D ∥ for the direction parallel to the rod decreases linearly with increasing rod length l. In unentangled polymers, the diffusion coefficient for the direction normal to the rod exhibits a crossover from D ⊥ ~ l -2 to D ⊥ ~ l -1 with increasing l, corresponding to a progressive coupling of nanorod motion to the polymers. Accordingly, the rotational diffusion coefficient D R ≈ D ⊥ l -2 ~ l -4 and then D R ~ l -3 as l increases. In entangled polymers, D ⊥ and D R are suppressed for l larger than the entanglement mesh size a. D ⊥ ~ l -3 and D R ~ l -5 for l sufficiently above a in agreement with de Gennes' rod reptation model.

6.
J Chem Phys ; 153(14): 144904, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33086814

ABSTRACT

Highly oriented and crystalline polyetheylene (PE) fibers have a large failure stress under rapid tensile loading but exhibit significant creep at much smaller stresses that limits applications. A possible mechanism is slip of chains due to stress-enhanced, thermally activated nucleation of dislocations at chain ends in crystalline regions. Molecular dynamics simulations are used to parameterize a Frenkel-Kontorova model that provides analytic expressions for the limiting stress and activation energy for dislocation nucleation as a function of stress. Results from four commonly used hydrocarbon potentials are compared to show that the qualitative behavior is robust and estimate quantitative uncertainties. In all cases, the results can be described by an Eyring model with values of the zero-stress activation energy Ea 0≈1.5 eV and activation volume V* ≈ 45 Å3 that are consistent with the experimental results for increasingly crystalline materials. The limiting yield stress is ∼8 GPa. These results suggest that activated dislocation nucleation at chain ends is an important mechanism for creep in highly oriented PE fibers.

7.
Phys Rev Lett ; 124(2): 027801, 2020 Jan 17.
Article in English | MEDLINE | ID: mdl-32004030

ABSTRACT

Molecular dynamics simulations confirm recent extensional flow experiments showing ring polymer melts exhibit strong extension-rate thickening of the viscosity at Weissenberg numbers Wi≪1. Thickening coincides with the extreme elongation of a minority population of rings that grows with Wi. The large susceptibility of some rings to extend is due to a flow-driven formation of topological links that connect multiple rings into supramolecular chains. Links form spontaneously with a longer delay at lower Wi and are pulled tight and stabilized by the flow. Once linked, these composite objects experience larger drag forces than individual rings, driving their strong elongation. The fraction of linked rings depends nonmonotonically on Wi, increasing to a maximum when Wi∼1 before rapidly decreasing when the strain rate approaches 1/τ_{e}.

8.
ACS Macro Lett ; 9(10): 1452-1457, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-35653662

ABSTRACT

Adding small amounts of ring polymers to a matrix of their linear counterparts is known to increase the zero-shear-rate viscosity because of linear-ring threading. Uniaxial extensional rheology measurements show that, unlike its pure linear and ring constituents, the blend exhibits an overshoot in the stress growth coefficient. By combining these measurements with ex-situ small-angle neutron scattering and nonequilibrium molecular dynamics simulations, this overshoot is shown to be driven by a transient threading-unthreading transition of rings embedded within the linear entanglement network. Prior to unthreading, embedded rings deform affinely with the linear entanglement network and produce a measurably stronger elongation of the linear chains in the blend compared to the pure linear melt. Thus, rings uniquely alter the mechanisms of transient elongation in linear polymers.

9.
10.
Phys Rev Lett ; 121(4): 047801, 2018 Jul 27.
Article in English | MEDLINE | ID: mdl-30095953

ABSTRACT

Nonlinear extensional flows are common in polymer processing, but they remain challenging theoretically because dramatic stretching of chains deforms the entanglement network far from equilibrium. Here, we present coarse-grained simulations of extensional flows in entangled polymer melts for Rouse-Weissenberg numbers Wi_{R}=0.06-52 and Hencky strains 뵳6. Simulations reproduce experimental trends in extensional viscosity with time, rate, and molecular weight. Studies of molecular structure reveal an elongation and thinning of the confining tube with increasing Wi_{R}. The rising stress is quantitatively consistent with the decreasing entropy of chains at the equilibrium entanglement length. Molecular weight dependent trends in viscosity are related to a crossover from the Newtonian limit to a high rate limit that scales differently with chain length.

11.
ACS Macro Lett ; 5(3): 263-267, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-35614718

ABSTRACT

We use large scale molecular dynamics (MD) simulations to determine the tensile yield mechanism of orthorhombic polyethylene (PE) crystals with finite chains spanning 102-104 carbons in length. We find the yield stress σy saturates for long chains at 6.3 GPa, agreeing well with experiments. We show chains do not break, but always yield by slip, after nucleation of 1D dislocations at chain ends. Dislocations are accurately described by a Frenkel-Kontorova model parametrized by the mechanical properties of an ideal crystal. We compute a dislocation core size ξ ≈ 25 Å and determine the high and low strain rate limits of σy. Our results suggest characterizing the 1D dislocations of polymer crystals as an efficient method for numerically predicting the ultimate tensile strength of aligned fibers.

12.
J Chem Phys ; 142(2): 024903, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25591383

ABSTRACT

The Adaptive Intermolecular Reactive Empirical Bond Order potential (AIREBO) for hydrocarbons has been widely used to study dynamic bonding processes under ambient conditions. However, its intermolecular interactions are modeled by a Lennard-Jones (LJ) potential whose unphysically divergent power-law repulsion causes AIREBO to fail when applied to systems at high pressure. We present a modified potential, AIREBO-M, where we have replaced the singular Lennard-Jones potential with a Morse potential. We optimize the new functional form to improve intermolecular steric repulsions, while preserving the ambient thermodynamics of the original potentials as much as possible. The potential is fit to experimental measurements of the layer spacing of graphite up to 14 GPa and first principles calculations of steric interactions between small alkanes. To validate AIREBO-M's accuracy and transferability, we apply it to a graphite bilayer and orthorhombic polyethylene. AIREBO-M gives bilayer compression consistent with quantum calculations, and it accurately reproduces the quasistatic and shock compression of orthorhombic polyethlyene up to at least 40 GPa.

13.
Nanoscale ; 5(21): 10212-8, 2013 Nov 07.
Article in English | MEDLINE | ID: mdl-23892872

ABSTRACT

We have used in situ current-voltage measurements of cup-stacked carbon nanotubes (CSCNTs) to establish reversible strain induced (compressive bending) semiconducting to metallic behavior. The corresponding electrical resistance decreases by two orders of magnitude during the process, and reaches values comparable to those of highly crystalline multi-walled carbon nanotubes (MWCNTs) and graphite. Joule heating experiments on the same CSCNTs showed that the edges of individual cups merge to form "loops" induced by the heating process. The resistance of these looped CSCNTs was close to that of highly deformed CSCNTs (and crystalline MWCNTs), thus suggesting that a similar conduction mechanism took place in both cases. Using a combination of molecular dynamics and first-principles calculations based on density functional theory, we conclude that an edge-to-edge interlayer transport mechanism results in conduction channels at the compressed side of the CSCNTs due to electronic density overlap between individual cups, thus making CSCNTs more conducting. This strain-induced CSCNT semiconductor to metal transition could potentially be applied to enable functional composite materials (e.g. mechanical sensors) with enhanced and tunable conducting properties upon compression.

SELECTION OF CITATIONS
SEARCH DETAIL
...