Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
bioRxiv ; 2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38559085

ABSTRACT

Genome organization is intricately tied to regulating genes and associated cell fate decisions. In this study, we examine the positioning and functional significance of human genes, grouped by their evolutionary age, within the 3D organization of the genome. We reveal that genes of different evolutionary origin have distinct positioning relationships with both domains and loop anchors, and remarkably consistent relationships with boundaries across cell types. While the functional associations of each group of genes are primarily cell type-specific, such associations of conserved genes maintain greater stability across 3D genomic features and disease than recently evolved genes. Furthermore, the expression of these genes across various tissues follows an evolutionary progression, such that RNA levels increase from young genes to ancient genes. Thus, the distinct relationships of gene evolutionary age, function, and positioning within 3D genomic features contribute to tissue-specific gene regulation in development and disease.

2.
Am J Psychiatry ; 179(3): 189-203, 2022 03.
Article in English | MEDLINE | ID: mdl-35236119

ABSTRACT

Rare genomic disorders (RGDs) confer elevated risk for neurodevelopmental psychiatric disorders. In this era of intense genomics discoveries, the landscape of RGDs is rapidly evolving. However, there has not been comparable progress to date in scalable, harmonized phenotyping methods. As a result, beyond associations with categorical diagnoses, the effects on dimensional traits remain unclear for many RGDs. The nature and specificity of RGD effects on cognitive and behavioral traits is an area of intense investigation: RGDs are frequently associated with more than one psychiatric condition, and those studied to date affect, to varying degrees, a broad range of developmental and cognitive functions. Although many RGDs have large effects, phenotypic expression is typically influenced by additional genomic and environmental factors. There is emerging evidence that using polygenic risk scores in individuals with RGDs offers opportunities to refine prediction, thus allowing for the identification of those at greatest risk of psychiatric illness. However, translation into the clinic is hindered by roadblocks, which include limited genetic testing in clinical psychiatry, and the lack of guidelines for following individuals with RGDs, who are at high risk of developing psychiatric symptoms. The Genes to Mental Health Network (G2MH) is a newly funded National Institute of Mental Health initiative that will collect, share, and analyze large-scale data sets combining genomics and dimensional measures of psychopathology spanning diverse populations and geography. The authors present here the most recent understanding of the effects of RGDs on dimensional behavioral traits and risk for psychiatric conditions and discuss strategies that will be pursued within the G2MH network, as well as how expected results can be translated into clinical practice to improve patient outcomes.


Subject(s)
Mental Disorders , Psychiatry , Cognition , Humans , Mental Disorders/diagnosis , Mental Disorders/genetics , Mental Health , Psychopathology
3.
J Med Genet ; 59(7): 697-705, 2022 07.
Article in English | MEDLINE | ID: mdl-34321323

ABSTRACT

BACKGROUND: O'Donnell-Luria-Rodan syndrome (ODLURO) is an autosomal-dominant neurodevelopmental disorder caused by pathogenic, mostly truncating variants in KMT2E. It was first described by O'Donnell-Luria et al in 2019 in a cohort of 38 patients. Clinical features encompass macrocephaly, mild intellectual disability (ID), autism spectrum disorder (ASD) susceptibility and seizure susceptibility. METHODS: Affected individuals were ascertained at paediatric and genetic centres in various countries by diagnostic chromosome microarray or exome/genome sequencing. Patients were collected into a case cohort and were systematically phenotyped where possible. RESULTS: We report 18 additional patients from 17 families with genetically confirmed ODLURO. We identified 15 different heterozygous likely pathogenic or pathogenic sequence variants (14 novel) and two partial microdeletions of KMT2E. We confirm and refine the phenotypic spectrum of the KMT2E-related neurodevelopmental disorder, especially concerning cognitive development, with rather mild ID and macrocephaly with subtle facial features in most patients. We observe a high prevalence of ASD in our cohort (41%), while seizures are present in only two patients. We extend the phenotypic spectrum by sleep disturbances. CONCLUSION: Our study, bringing the total of known patients with ODLURO to more than 60 within 2 years of the first publication, suggests an unexpectedly high relative frequency of this syndrome worldwide. It seems likely that ODLURO, although just recently described, is among the more common single-gene aetiologies of neurodevelopmental delay and ASD. We present the second systematic case series of patients with ODLURO, further refining the mutational and phenotypic spectrum of this not-so-rare syndrome.


Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Megalencephaly , Neurodevelopmental Disorders , Autism Spectrum Disorder/genetics , Child , Humans , Intellectual Disability/diagnosis , Intellectual Disability/epidemiology , Intellectual Disability/genetics , Seizures/epidemiology , Seizures/genetics , Syndrome , Exome Sequencing
4.
J Med Genet ; 59(8): 748-758, 2022 08.
Article in English | MEDLINE | ID: mdl-34740920

ABSTRACT

BACKGROUND: Clinical exome sequencing typically achieves diagnostic yields of 30%-57.5% in individuals with monogenic rare diseases. Undiagnosed diseases programmes implement strategies to improve diagnostic outcomes for these individuals. AIM: We share the lessons learnt from the first 3 years of the Undiagnosed Diseases Program-Victoria, an Australian programme embedded within a clinical genetics service in the state of Victoria with a focus on paediatric rare diseases. METHODS: We enrolled families who remained without a diagnosis after clinical genomic (panel, exome or genome) sequencing between 2016 and 2018. We used family-based exome sequencing (family ES), family-based genome sequencing (family GS), RNA sequencing (RNA-seq) and high-resolution chromosomal microarray (CMA) with research-based analysis. RESULTS: In 150 families, we achieved a diagnosis or strong candidate in 64 (42.7%) (37 in known genes with a consistent phenotype, 3 in known genes with a novel phenotype and 24 in novel disease genes). Fifty-four diagnoses or strong candidates were made by family ES, six by family GS with RNA-seq, two by high-resolution CMA and two by data reanalysis. CONCLUSION: We share our lessons learnt from the programme. Flexible implementation of multiple strategies allowed for scalability and response to the availability of new technologies. Broad implementation of family ES with research-based analysis showed promising yields post a negative clinical singleton ES. RNA-seq offered multiple benefits in family ES-negative populations. International data sharing strategies were critical in facilitating collaborations to establish novel disease-gene associations. Finally, the integrated approach of a multiskilled, multidisciplinary team was fundamental to having diverse perspectives and strategic decision-making.


Subject(s)
Undiagnosed Diseases , Australia , Exome , Humans , Rare Diseases/diagnosis , Rare Diseases/epidemiology , Rare Diseases/genetics , Exome Sequencing
10.
Nat Commun ; 11(1): 2539, 2020 05 27.
Article in English | MEDLINE | ID: mdl-32461613

ABSTRACT

Multi-nucleotide variants (MNVs), defined as two or more nearby variants existing on the same haplotype in an individual, are a clinically and biologically important class of genetic variation. However, existing tools typically do not accurately classify MNVs, and understanding of their mutational origins remains limited. Here, we systematically survey MNVs in 125,748 whole exomes and 15,708 whole genomes from the Genome Aggregation Database (gnomAD). We identify 1,792,248 MNVs across the genome with constituent variants falling within 2 bp distance of one another, including 18,756 variants with a novel combined effect on protein sequence. Finally, we estimate the relative impact of known mutational mechanisms - CpG deamination, replication error by polymerase zeta, and polymerase slippage at repeat junctions - on the generation of MNVs. Our results demonstrate the value of haplotype-aware variant annotation, and refine our understanding of genome-wide mutational mechanisms of MNVs.


Subject(s)
Exome , Genetic Variation , Genome, Human , CpG Islands , DNA Mutational Analysis , Databases, Genetic , Humans , Mutation
11.
Nat Commun ; 11(1): 2523, 2020 05 27.
Article in English | MEDLINE | ID: mdl-32461616

ABSTRACT

Upstream open reading frames (uORFs) are tissue-specific cis-regulators of protein translation. Isolated reports have shown that variants that create or disrupt uORFs can cause disease. Here, in a systematic genome-wide study using 15,708 whole genome sequences, we show that variants that create new upstream start codons, and variants disrupting stop sites of existing uORFs, are under strong negative selection. This selection signal is significantly stronger for variants arising upstream of genes intolerant to loss-of-function variants. Furthermore, variants creating uORFs that overlap the coding sequence show signals of selection equivalent to coding missense variants. Finally, we identify specific genes where modification of uORFs likely represents an important disease mechanism, and report a novel uORF frameshift variant upstream of NF2 in neurofibromatosis. Our results highlight uORF-perturbing variants as an under-recognised functional class that contribute to penetrant human disease, and demonstrate the power of large-scale population sequencing data in studying non-coding variant classes.


Subject(s)
5' Untranslated Regions , Genetic Variation , Loss of Function Mutation , Proteins/genetics , Base Sequence , Genome, Human , Humans , Open Reading Frames
12.
Nature ; 581(7809): 452-458, 2020 05.
Article in English | MEDLINE | ID: mdl-32461655

ABSTRACT

The acceleration of DNA sequencing in samples from patients and population studies has resulted in extensive catalogues of human genetic variation, but the interpretation of rare genetic variants remains problematic. A notable example of this challenge is the existence of disruptive variants in dosage-sensitive disease genes, even in apparently healthy individuals. Here, by manual curation of putative loss-of-function (pLoF) variants in haploinsufficient disease genes in the Genome Aggregation Database (gnomAD)1, we show that one explanation for this paradox involves alternative splicing of mRNA, which allows exons of a gene to be expressed at varying levels across different cell types. Currently, no existing annotation tool systematically incorporates information about exon expression into the interpretation of variants. We develop a transcript-level annotation metric known as the 'proportion expressed across transcripts', which quantifies isoform expression for variants. We calculate this metric using 11,706 tissue samples from the Genotype Tissue Expression (GTEx) project2 and show that it can differentiate between weakly and highly evolutionarily conserved exons, a proxy for functional importance. We demonstrate that expression-based annotation selectively filters 22.8% of falsely annotated pLoF variants found in haploinsufficient disease genes in gnomAD, while removing less than 4% of high-confidence pathogenic variants in the same genes. Finally, we apply our expression filter to the analysis of de novo variants in patients with autism spectrum disorder and intellectual disability or developmental disorders to show that pLoF variants in weakly expressed regions have similar effect sizes to those of synonymous variants, whereas pLoF variants in highly expressed exons are most strongly enriched among cases. Our annotation is fast, flexible and generalizable, making it possible for any variant file to be annotated with any isoform expression dataset, and will be valuable for the genetic diagnosis of rare diseases, the analysis of rare variant burden in complex disorders, and the curation and prioritization of variants in recall-by-genotype studies.


Subject(s)
Disease/genetics , Haploinsufficiency/genetics , Loss of Function Mutation/genetics , Molecular Sequence Annotation , Transcription, Genetic , Transcriptome/genetics , Autism Spectrum Disorder/genetics , Datasets as Topic , Developmental Disabilities/genetics , Exons/genetics , Female , Genotype , Humans , Intellectual Disability/genetics , Male , Molecular Sequence Annotation/standards , Poisson Distribution , RNA, Messenger/analysis , RNA, Messenger/genetics , Rare Diseases/diagnosis , Rare Diseases/genetics , Reproducibility of Results , Exome Sequencing
13.
Nature ; 581(7809): 434-443, 2020 05.
Article in English | MEDLINE | ID: mdl-32461654

ABSTRACT

Genetic variants that inactivate protein-coding genes are a powerful source of information about the phenotypic consequences of gene disruption: genes that are crucial for the function of an organism will be depleted of such variants in natural populations, whereas non-essential genes will tolerate their accumulation. However, predicted loss-of-function variants are enriched for annotation errors, and tend to be found at extremely low frequencies, so their analysis requires careful variant annotation and very large sample sizes1. Here we describe the aggregation of 125,748 exomes and 15,708 genomes from human sequencing studies into the Genome Aggregation Database (gnomAD). We identify 443,769 high-confidence predicted loss-of-function variants in this cohort after filtering for artefacts caused by sequencing and annotation errors. Using an improved model of human mutation rates, we classify human protein-coding genes along a spectrum that represents tolerance to inactivation, validate this classification using data from model organisms and engineered human cells, and show that it can be used to improve the power of gene discovery for both common and rare diseases.


Subject(s)
Exome/genetics , Genes, Essential/genetics , Genetic Variation/genetics , Genome, Human/genetics , Adult , Brain/metabolism , Cardiovascular Diseases/genetics , Cohort Studies , Databases, Genetic , Female , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Humans , Loss of Function Mutation/genetics , Male , Mutation Rate , Proprotein Convertase 9/genetics , RNA, Messenger/genetics , Reproducibility of Results , Exome Sequencing , Whole Genome Sequencing
14.
Dev Biol ; 464(1): 71-87, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32320685

ABSTRACT

Animal development and homeostasis depend on precise temporal and spatial intercellular signaling. Components shared between signaling pathways, generally thought to decrease specificity, paradoxically can also provide a solution to pathway coordination. Here we show that the Bone Morphogenetic Protein (BMP) and Wnt signaling pathways share Apcdd1 as a common inhibitor and that Apcdd1 is a taxon-restricted gene with novel domains and signaling functions. Previously, we showed that Apcdd1 inhibits Wnt signaling (Shimomura et al., 2010), here we find that Apcdd1 potently inhibits BMP signaling in body axis formation and neural differentiation in chicken, frog, zebrafish. Furthermore, we find that Apcdd1 has an evolutionarily novel protein domain. Our results from experiments and modeling suggest that Apcdd1 may coordinate the outputs of two signaling pathways that are central to animal development and human disease.


Subject(s)
Body Patterning , Bone Morphogenetic Proteins/metabolism , Embryo, Nonmammalian/embryology , Membrane Glycoproteins/metabolism , Wnt Signaling Pathway , Xenopus Proteins/metabolism , Animals , Bone Morphogenetic Proteins/genetics , Membrane Glycoproteins/genetics , Protein Domains , Xenopus Proteins/genetics , Xenopus laevis
15.
Am J Hum Genet ; 105(5): 921-932, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31607426

ABSTRACT

Meiotic nondisjunction and resulting aneuploidy can lead to severe health consequences in humans. Aneuploidy rescue can restore euploidy but may result in uniparental disomy (UPD), the inheritance of both homologs of a chromosome from one parent with no representative copy from the other. Current understanding of UPD is limited to ∼3,300 case subjects for which UPD was associated with clinical presentation due to imprinting disorders or recessive diseases. Thus, the prevalence of UPD and its phenotypic consequences in the general population are unknown. We searched for instances of UPD across 4,400,363 consented research participants from the personal genetics company 23andMe, Inc., and 431,094 UK Biobank participants. Using computationally detected DNA segments identical-by-descent (IBD) and runs of homozygosity (ROH), we identified 675 instances of UPD across both databases. We estimate that UPD is twice as common as previously thought, and we present a machine-learning framework to detect UPD using ROH. While we find a nominally significant association between UPD of chromosome 22 and autism risk, we do not find significant associations between UPD and deleterious traits in the 23andMe database.


Subject(s)
Uniparental Disomy/genetics , Aneuploidy , Female , Genomic Imprinting/genetics , Homozygote , Humans , Male , Phenotype , Polymorphism, Single Nucleotide/genetics , Prevalence
16.
Am J Hum Genet ; 104(6): 1210-1222, 2019 06 06.
Article in English | MEDLINE | ID: mdl-31079897

ABSTRACT

We delineate a KMT2E-related neurodevelopmental disorder on the basis of 38 individuals in 36 families. This study includes 31 distinct heterozygous variants in KMT2E (28 ascertained from Matchmaker Exchange and three previously reported), and four individuals with chromosome 7q22.2-22.23 microdeletions encompassing KMT2E (one previously reported). Almost all variants occurred de novo, and most were truncating. Most affected individuals with protein-truncating variants presented with mild intellectual disability. One-quarter of individuals met criteria for autism. Additional common features include macrocephaly, hypotonia, functional gastrointestinal abnormalities, and a subtle facial gestalt. Epilepsy was present in about one-fifth of individuals with truncating variants and was responsive to treatment with anti-epileptic medications in almost all. More than 70% of the individuals were male, and expressivity was variable by sex; epilepsy was more common in females and autism more common in males. The four individuals with microdeletions encompassing KMT2E generally presented similarly to those with truncating variants, but the degree of developmental delay was greater. The group of four individuals with missense variants in KMT2E presented with the most severe developmental delays. Epilepsy was present in all individuals with missense variants, often manifesting as treatment-resistant infantile epileptic encephalopathy. Microcephaly was also common in this group. Haploinsufficiency versus gain-of-function or dominant-negative effects specific to these missense variants in KMT2E might explain this divergence in phenotype, but requires independent validation. Disruptive variants in KMT2E are an under-recognized cause of neurodevelopmental abnormalities.


Subject(s)
DNA-Binding Proteins/genetics , Epilepsy/etiology , Genetic Variation , Heterozygote , Neurodevelopmental Disorders/etiology , Adolescent , Adult , Child , Child, Preschool , Epilepsy/pathology , Female , Haploinsufficiency , Humans , Infant , Male , Neurodevelopmental Disorders/pathology , Pedigree , Phenotype , Young Adult
17.
Eur J Hum Genet ; 27(9): 1398-1405, 2019 09.
Article in English | MEDLINE | ID: mdl-30979967

ABSTRACT

Clinical exome sequencing (CES) is increasingly being utilized; however, a large proportion of patients remain undiagnosed, creating a need for a systematic approach to increase the diagnostic yield. We have reanalyzed CES data for a clinically heterogeneous cohort of 102 probands with likely Mendelian conditions, including 74 negative cases and 28 cases with candidate variants, but reanalysis requested by clinicians. Reanalysis was performed by an interdisciplinary team using a validated custom-built pipeline, "Variant Explorer Pipeline" (VExP). This reanalysis approach and results were compared with existing literature. Reanalysis of candidate variants from CES in 28 cases revealed 1 interpretation that needed to be reclassified. A confirmed or potential genetic diagnosis was identified in 24 of 75 CES-negative/reclassified cases (32.0%), including variants in known disease-causing genes (n = 6) or candidate genes (n = 18). This yield was higher compared with similar studies demonstrating the utility of this approach. In summary, reanalysis of negative CES in a research setting enhances diagnostic yield by about a third. This study suggests the need for comprehensive, continued reanalysis of exome data when molecular diagnosis is elusive.


Subject(s)
Computational Biology/methods , Exome Sequencing , Genetic Testing , Alleles , Exome , Genetic Association Studies/methods , Genetic Predisposition to Disease , Genetic Testing/methods , Genotype , Humans , Male , Phenotype
19.
Genet Med ; 21(4): 798-812, 2019 04.
Article in English | MEDLINE | ID: mdl-30655598

ABSTRACT

Identifying genes and variants contributing to rare disease phenotypes and Mendelian conditions informs biology and medicine, yet potential phenotypic consequences for variation of >75% of the ~20,000 annotated genes in the human genome are lacking. Technical advances to assess rare variation genome-wide, particularly exome sequencing (ES), enabled establishment in the United States of the National Institutes of Health (NIH)-supported Centers for Mendelian Genomics (CMGs) and have facilitated collaborative studies resulting in novel "disease gene" discoveries. Pedigree-based genomic studies and rare variant analyses in families with suspected Mendelian conditions have led to the elucidation of hundreds of novel disease genes and highlighted the impact of de novo mutational events, somatic variation underlying nononcologic traits, incompletely penetrant alleles, phenotypes with high locus heterogeneity, and multilocus pathogenic variation. Herein, we highlight CMG collaborative discoveries that have contributed to understanding both rare and common diseases and discuss opportunities for future discovery in single-locus Mendelian disorder genomics. Phenotypic annotation of all human genes; development of bioinformatic tools and analytic methods; exploration of non-Mendelian modes of inheritance including reduced penetrance, multilocus variation, and oligogenic inheritance; construction of allelic series at a locus; enhanced data sharing worldwide; and integration with clinical genomics are explored. Realizing the full contribution of rare disease research to functional annotation of the human genome, and further illuminating human biology and health, will lay the foundation for the Precision Medicine Initiative.


Subject(s)
Genetic Diseases, Inborn/genetics , Genetic Heterogeneity , Genome, Human/genetics , Genomics/trends , Databases, Genetic , Genetic Predisposition to Disease , Humans , National Institutes of Health (U.S.) , Pedigree , United States , Exome Sequencing/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...