Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 1060428, 2022.
Article in English | MEDLINE | ID: mdl-36483948

ABSTRACT

Septoria tritici blotch (STB; Zymoseptoria tritici) is a severe leaf disease on wheat in Northern Europe. Fungicide resistance in the populations of Z. tritici is increasingly challenging future control options. Twenty-five field trials were carried out in nine countries across Europe from 2019 to 2021 to investigate the efficacy of specific DMI and SDHI fungicides against STB. During the test period, two single DMIs (prothioconazole and mefentrifluconazole) and four different SDHIs (fluxapyroxad, bixafen, benzovindiflupyr and fluopyram) along with different co-formulations of DMIs and SDHIs applied at flag leaf emergence were tested. Across all countries, significant differences in azole performances against STB were seen; prothioconazole was outperformed in all countries by mefentrifluconazole. The effects also varied substantially between the SDHIs, with fluxapyroxad providing the best efficacy overall, while the performance of fluopyram was inferior to other SDHIs. In Ireland and the UK, the efficacy of SDHIs was significantly lower compared with results from continental Europe. This reduction in performances from both DMIs and SDHIs was reflected in yield responses and also linked to decreased sensitivity of Z. tritici isolates measured as EC50 values. A clear and significant gradient in EC50 values was seen across Europe. The lower sensitivity to SDHIs in Ireland and the UK was coincident with the prevalence of SDH-C-alterations T79N, N86S, and sporadically of H152R. The isolates' sensitivity to SDHIs showed a clear cross-resistance between fluxapyroxad, bixafen, benzovindiflupyr and fluopyram, although the links with the latter were less apparent. Co-formulations of DMIs + SDHIs performed well in all trials conducted in 2021. Only minor differences were seen between fluxapyroxad + mefentrifluconazole and bixafen + fluopyram + prothioconazole; the combination of benzovindiflupyr + prothioconazole gave an inferior performance at some sites. Fenpicoxamid performed in line with the most effective co-formulations. This investigation shows a clear link between reduced field efficacy by solo SDHIs as a result of increasing problems with sensitivity shifting and the selection of several SDH-C mutations. The presented data stress the need to practice anti-resistance strategies to delay further erosion of fungicide efficacy.

2.
Front Plant Sci ; 11: 433, 2020.
Article in English | MEDLINE | ID: mdl-32477375

ABSTRACT

Understanding the nuances of host/pathogen interactions are paramount if we wish to effectively control cereal diseases. In the case of the wheat/Zymoseptoria tritici interaction that leads to Septoria tritici blotch (STB) disease, a 10,000-year-old conflict has led to considerable armaments being developed on both sides which are not reflected in conventional model systems. Taxonomically restricted genes (TRGs) have evolved in wheat to better allow it to cope with stress caused by fungal pathogens, and Z. tritici has evolved specialized effectors which allow it to manipulate its' host. A microarray focused on the latent phase response of a resistant wheat cultivar (cv. Stigg) and susceptible wheat cultivar (cv. Gallant) to Z. tritici infection was mined for TRGs within the Poaceae. From this analysis, we identified two TRGs that were significantly upregulated in response to Z. tritici infection, Septoria-responsive TRG6 and 7 (TaSRTRG6 and TaSRTRG7). Virus induced silencing of these genes resulted in an increased susceptibility to STB disease in cvs. Gallant and Stigg, and significantly so in the latter (2.5-fold increase in STB disease). In silico and localization studies categorized TaSRTRG6 as a secreted protein and TaSRTRG7 as an intracellular protein. Yeast two-hybrid analysis and biofluorescent complementation studies demonstrated that both TaSRTRG6 and TaSRTRG7 can interact with small proteins secreted by Z. tritici (potential effector candidates). Thus we conclude that TRGs are an important part of the wheat-Z. tritici co-evolution story and potential candidates for modulating STB resistance.

3.
Mhealth ; 2: 29, 2016.
Article in English | MEDLINE | ID: mdl-28293602

ABSTRACT

BACKGROUND: Patient safety requires optimal management of medications. Electronic systems are encouraged to reduce medication errors. Near field communications (NFC) is an emerging technology that may be used to develop novel medication management systems. METHODS: An NFC-based system was designed to facilitate prescribing, administration and review of medications commonly used on surgical wards. Final year medical, nursing, and pharmacy students were recruited to test the electronic system in a cross-over observational setting on a simulated ward. Medication errors were compared against errors recorded using a paper-based system. RESULTS: A significant difference in the commission of medication errors was seen when NFC and paper-based medication systems were compared. Paper use resulted in a mean of 4.09 errors per prescribing round while NFC prescribing resulted in a mean of 0.22 errors per simulated prescribing round (P=0.000). Likewise, medication administration errors were reduced from a mean of 2.30 per drug round with a Paper system to a mean of 0.80 errors per round using NFC (P<0.015). A mean satisfaction score of 2.30 was reported by users, (rated on seven-point scale with 1 denoting total satisfaction with system use and 7 denoting total dissatisfaction). CONCLUSIONS: An NFC based medication system may be used to effectively reduce medication errors in a simulated ward environment.

4.
BMC Res Notes ; 8: 132, 2015 Apr 09.
Article in English | MEDLINE | ID: mdl-25888730

ABSTRACT

BACKGROUND: Zymoseptoria tritici, the causative organism of Septoria tritici blotch disease is a prevalent biotic stressor of wheat production, exerting substantial economic constraints on farmers, requiring intensive chemical control to protect yields. A hemibiotrophic pathogen with a long asymptomless phase of up to 11 days post inoculation (dpi) before a rapid switch to necrotrophy; a deficit exists in our understanding of the events occurring within the host during the two phases of infection. Brachypodium distachyon has demonstrated its potential as a model species for the investigation of fungal disease resistance in cereal and grass species. The aim of this study was to assess the physical interaction between Z. tritici (strain IPO323) and B. distachyon and examine its potential as a model pathosystem for Z. tritici. RESULTS: Septoria tritici blotch symptoms developed on the wheat cultivar Riband from 12 dpi with pycnidial formation abundant by 20 dpi. Symptoms on B. distachyon ecotype Bd21-1 were visible from 1 dpi: characteristic pale, water soaked lesions which developed into blotch-like lesions by 4 dpi. These lesions then became necrotic with chlorotic regions expanding up to 7 dpi. Sporulation on B. distachyon tissues was not observed and no evidence of fungal penetration could be obtained, indicating that Z. tritici was unable to complete its life cycle within B. distachyon ecotypes. However, observation of host responses to the Z. tritici strain IPO323 in five B. distachyon ecotypes revealed a variation in resistance responses, ranging from immunity to a chlorotic/necrotic phenotype. CONCLUSIONS: The observed interactions suggest that B. distachyon is an incompatible host for Z. tritici infection, with STB symptom development on B. distachyon comparable to that observed during the early infection stages on the natural host, wheat. However first visible symptoms occurred more rapidly on B. distachyon; from 1 dpi in comparison to 12 dpi in wheat. Consequently, we propose that the interaction between B. distachyon and Z. tritici as observed in this study could serve as a suitable model pathosystem with which to investigate mechanisms underpinning an incompatible host response to Z. tritici.


Subject(s)
Brachypodium/microbiology , Plant Diseases/microbiology , Plant Leaves/microbiology , Saccharomycetales/pathogenicity , Brachypodium/immunology , Ecotype , Host-Pathogen Interactions , Models, Biological , Plant Diseases/immunology , Plant Immunity , Plant Leaves/immunology , Saccharomycetales/physiology , Triticum/immunology , Triticum/microbiology
5.
Trends Plant Sci ; 19(9): 602-10, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24957882

ABSTRACT

In the utopic absence of abiotic and/or biotic stressors, attaining the predicted increase (up to 70%) in wheat demand by 2050 in response to global population trends is a challenge. This objective becomes daunting, however, when one factors in the continuous constraint on global wheat production posed by Septoria tritici blotch (STB) disease. This is because, despite resistant loci being identified, a deficit of commercially relevant STB-resistant wheat germplasm remains. The issue is further compounded for growers by the emergence and prevalence of fungicide-resistant/insensitive strains of the causative pathogen Zymoseptoria tritici (formerly known as Mycosphaerella graminicola/Septoria tritici). However, biotechnology-based research is providing new opportunities in this struggle. As the exome response of wheat to STB attack begins to be deciphered, genes intrinsic to resistant and susceptible phenotypes will be identified. Combined with the application of genome-editing techniques and a growing appreciation of the complexity of wheat's and the dynamism of Z. tritici's genome, the generation of resulting STB-resistant wheat varieties will counter the prevalent threat of STB disease in wheat-production systems.


Subject(s)
Ascomycota/physiology , Plant Diseases/microbiology , Triticum/microbiology , Drug Resistance, Fungal , Fungicides, Industrial/pharmacology , Plant Diseases/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...