Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 202(8): 2240-2253, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30796179

ABSTRACT

Alpha-1 antitrypsin (AAT) is an acute phase protein that possesses immune-regulatory and anti-inflammatory functions independent of antiprotease activity. AAT deficiency (AATD) is associated with early-onset emphysema and chronic obstructive pulmonary disease. Of interest are the AATD nonsense mutations (termed null or Q0), the majority of which arise from premature termination codons in the mRNA coding region. We have recently demonstrated that plasma from an AATD patient homozygous for the Null Bolton allele (Q0bolton ) contains AAT protein of truncated size. Although the potential to alleviate the phenotypic consequences of AATD by increasing levels of truncated protein holds therapeutic promise, protein functionality is key. The goal of this study was to evaluate the structural features and anti-inflammatory capacity of Q0bolton-AAT. A low-abundance, truncated AAT protein was confirmed in plasma of a Q0bolton-AATD patient and was secreted by patient-derived induced pluripotent stem cell-hepatic cells. Functional assays confirmed the ability of purified Q0bolton-AAT protein to bind neutrophil elastase and to inhibit protease activity. Q0bolton-AAT bound IL-8 and leukotriene B4, comparable to healthy control M-AAT, and significantly decreased leukotriene B4-induced neutrophil adhesion (p = 0.04). Through a mechanism involving increased mRNA stability (p = 0.007), ataluren treatment of HEK-293 significantly increased Q0bolton-AAT mRNA expression (p = 0.03) and Q0bolton-AAT truncated protein secretion (p = 0.04). Results support the rationale for treatment with pharmacological agents that augment levels of functional Q0bolton-AAT protein, thus offering a potential therapeutic option for AATD patients with rare mutations of similar theratype.


Subject(s)
Alleles , Codon, Nonsense , alpha 1-Antitrypsin Deficiency , alpha 1-Antitrypsin , Adult , Female , Humans , Induced Pluripotent Stem Cells/immunology , Induced Pluripotent Stem Cells/metabolism , Liver/immunology , Liver/metabolism , Male , alpha 1-Antitrypsin/blood , alpha 1-Antitrypsin/genetics , alpha 1-Antitrypsin/immunology , alpha 1-Antitrypsin Deficiency/blood , alpha 1-Antitrypsin Deficiency/genetics , alpha 1-Antitrypsin Deficiency/immunology
3.
J Immunol ; 195(8): 3628-41, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26371243

ABSTRACT

Leukotriene B4 (LTB4) contributes to many inflammatory diseases, including genetic and nongenetic forms of chronic obstructive pulmonary disease. α-1 Antitrypsin (AAT) deficiency (AATD) is characterized by destruction of lung parenchyma and development of emphysema, caused by low AAT levels and a high neutrophil burden in the airways of affected individuals. In this study we assessed whether AATD is an LTB4-related disease and investigated the ability of serum AAT to control LTB4 signaling in neutrophils. In vitro studies demonstrate that neutrophil elastase is a key player in the LTB4 inflammatory cycle in AATD, causing increased LTB4 production, and associated BLT1 membrane receptor expression. AATD patients homozygous for the Z allele were characterized by increased neutrophil adhesion and degranulation responses to LTB4. We demonstrate that AAT can bind LTB4 and that AAT/LTB4 complex formation modulates BLT1 engagement and downstream signaling events, including 1,4,5-triphosphate production and Ca(2+) flux. Additionally, treatment of ZZ-AATD individuals with AAT augmentation therapy decreased plasma LTB4 concentrations and reduced levels of membrane-bound neutrophil elastase. Collectively, these results provide a mechanism by which AAT augmentation therapy impacts on LTB4 signaling in vivo, and not only reinforces the utility of this therapy for resolving inflammation in AATD, but supports useful future clinical applications in treatment of other LTB4-related diseases.


Subject(s)
Calcium Signaling/immunology , Cell Degranulation/immunology , Leukotriene B4/immunology , Neutrophils/immunology , Receptors, Leukotriene B4/immunology , alpha 1-Antitrypsin Deficiency/immunology , alpha 1-Antitrypsin/immunology , Adult , Female , Humans , Leukocyte Elastase/immunology , Lung/immunology , Lung/pathology , Male , Neutrophils/pathology , alpha 1-Antitrypsin/therapeutic use , alpha 1-Antitrypsin Deficiency/drug therapy , alpha 1-Antitrypsin Deficiency/pathology
4.
J Immunol ; 193(8): 3978-91, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25217166

ABSTRACT

Alpha-1 antitrypsin (AAT) deficiency (AATD) is characterized by neutrophil-driven lung destruction and early emphysema in a low AAT, and high neutrophil elastase environment in the lungs of affected individuals. In this study, we examined peripheral blood neutrophil apoptosis and showed it to be accelerated in individuals with AATD by a mechanism involving endoplasmic reticulum stress and aberrant TNF-α signaling. We reveal that neutrophil apoptosis in individuals homozygous for the Z allele (PiZZ) is increased nearly 2-fold compared with healthy controls and is associated with activation of the external death pathway. We demonstrate that in AATD, misfolded AAT protein accumulates in the endoplasmic reticulum of neutrophils, leading to endoplasmic reticulum stress and the expression of proapoptotic signals, including TNF-α, resulting in increased apoptosis and defective bacterial killing. In addition, treatment of AATD individuals with AAT augmentation therapy decreased neutrophil ADAM-17 activity and apoptosis in vivo and increased bacterial killing by treated cells. In summary, this study demonstrates that AAT can regulate neutrophil apoptosis by a previously unidentified and novel mechanism and highlights the role of AAT augmentation therapy in ameliorating inflammation in AATD.


Subject(s)
Apoptosis/immunology , Emphysema/immunology , Neutrophils/pathology , alpha 1-Antitrypsin Deficiency/drug therapy , alpha 1-Antitrypsin/therapeutic use , ADAM Proteins/biosynthesis , ADAM17 Protein , Adult , Aged , Emphysema/complications , Endoplasmic Reticulum/immunology , Endoplasmic Reticulum/pathology , Endoplasmic Reticulum Stress/immunology , Female , Humans , Inflammation/drug therapy , Inflammation/immunology , Leukocyte Elastase/biosynthesis , Leukocyte Elastase/metabolism , Lung/pathology , Lung Injury/drug therapy , Lung Injury/immunology , Lung Injury/pathology , Male , Middle Aged , Neutrophils/immunology , Protein Folding , Proteostasis Deficiencies/immunology , Pseudomonas aeruginosa/immunology , Signal Transduction/immunology , Tumor Necrosis Factor-alpha/biosynthesis , Tumor Necrosis Factor-alpha/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...