Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Lett ; 18(6): 20220036, 2022 06.
Article in English | MEDLINE | ID: mdl-35702980

ABSTRACT

The energy cost of adaptive immune activation in endotherms is typically quantified from changes in resting metabolic rate following exposure to a novel antigen. An implicit assumption of this technique is that all variation in energy costs following antigenic challenge is due solely to adaptive immunity, while ignoring potential changes in the energy demands of ongoing bodily functions. We critically assess this assumption by measuring both basal metabolic rate (BMR) and exercise-induced maximal metabolic rate (MMR) in house sparrows before and after the primary and two subsequent vaccinations with either saline (sham) or two novel antigens (keyhole limpet haemocyanin and sheep red blood cells; KLH and SRBC, respectively). We also examined the effect of inducing male breeding levels of testosterone (T) on immune responses and their metabolic costs in both males and females. Although there was a moderate decrease in KLH antibody formation in T-treated birds, there was no effect of T on BMR, MMR or immunity to SRBC. There was no effect of vaccination on BMR but, surprisingly, all vaccinated birds maintained MMR better than sham-treated birds as the experiment progressed. Our findings caution against emphasizing energy costs or nutrient diversion as being responsible for reported fitness reductions following activation of adaptive immunity.


Subject(s)
Sparrows , Animals , Basal Metabolism/physiology , Energy Metabolism/physiology , Female , Male , Sheep , Sparrows/physiology
2.
J Exp Biol ; 217(Pt 20): 3593-6, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25189368

ABSTRACT

The aerobic capacity model proposes that endothermy is a by-product of selection favouring high maximal metabolic rates (MMR) and its mechanistic coupling with basal metabolic rate (BMR). Attempts to validate this model in birds are equivocal and restricted to phenotypic correlations (rP), thus failing to distinguish among- and within-individual correlations (rind and re). We examined 300 paired measurements of BMR and MMR from 60 house sparrows before and after two levels of experimental manipulation - testosterone implants and immune challenge. Overall, repeatability was significant in both BMR (R=0.25±0.06) and MMR (R=0.52±0.06). Only the testosterone treatment altered the rP between BMR and MMR, which resulted from contrasting effects on rind and re. While rind was high and significant (0.62±0.22) in sham-implanted birds, re was negative and marginally non-significant (-0.15±0.09) in testosterone-treated birds. Thus, the expected mechanistic link between BMR and MMR was apparent, but only in birds with low testosterone levels.


Subject(s)
Basal Metabolism/physiology , Energy Metabolism/physiology , Sparrows/physiology , Animals , Basal Metabolism/immunology , Energy Metabolism/immunology , Erythrocytes , Female , Gastropoda , Hemocyanins/immunology , Male , Multivariate Analysis , Orchiectomy , Phenotype , Sheep , Sparrows/immunology , Testosterone/pharmacology
3.
Ann N Y Acad Sci ; 1170: 442-6, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19686174

ABSTRACT

Since the groundbreaking work of Wenzel, Bang, and Grubb in the 1960s, enormous progress has been made toward elucidating the sense of smell in procellariiform seabirds. Although it is now well established that adult procellariiforms use olfaction in many behaviors, such as for foraging, nest relocation, and mate recognition, the olfactory abilities of petrel chicks are less well understood. Recent studies have shown that petrel chicks can recognize prey-related odors and odors associated with their nest before leaving their burrow for the first time. The recognition of burrow odors by petrel chicks is unlikely to be used for homing, and we have suggested that chicks may be learning personal odors associated with the nest's occupants for use later in life in the context of kin recognition or mate choice. The source of personal odors in petrels is unknown. However, in other vertebrates, the major histocompatibility complex influences body odors, which in turn influence mating preferences. It is not currently known whether this highly polymorphic gene region influences body odors and individual recognition in the procellariiforms, but this could be a fruitful area of future research.


Subject(s)
Birds/physiology , Major Histocompatibility Complex/physiology , Odorants , Smell/physiology , Animals , Sexual Behavior, Animal , Species Specificity
4.
J Exp Biol ; 211(Pt 3): 337-40, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18203988

ABSTRACT

Burrow-nesting petrels use their well-developed sense of smell for foraging, homing to their nest, and mate recognition. The chicks of burrow-nesting petrels can apparently learn odours associated with prey while still in the nest, but the development of individual-specific odour recognition is less well understood. We used a simple two-choice test to determine whether 4- to 6-week-old chicks of a small, burrow-nesting species, the Leach's storm-petrel (Oceanodroma leucorhoa), prefer the scent of their own nest material to (1) the scent of similar organic material collected from the colony or (2) the scent of a conspecific's nest material. Results suggest that chicks clearly preferred the scent of their own nest material to that of similar organic material collected from the colony (96%; N=24; binomial test, P<0.001). Results further suggested that birds preferred the scent of their own nest material to that of a conspecific, though the preference was statistically less robust (67%; N=39; binomial test, P=0.05). Because Leach's storm-petrel chicks do not normally leave their burrow prior to fledging, an ability to recognise individual or nest-specific odours is not likely to be used for homing but instead may be linked to the development of individual recognition in different contexts.


Subject(s)
Birds/physiology , Nesting Behavior/physiology , Recognition, Psychology , Animals , Odorants
SELECTION OF CITATIONS
SEARCH DETAIL
...